Ikram_2024_Metab.Brain.Dis__

Reference

Title : Memory enhancing and neuroprotective effects of apomorphine in a rat model of dementia - Ikram_2024_Metab.Brain.Dis__
Author(s) : Ikram H , Zakir R , Haleem DJ
Ref : Metabolic Brain Disease , : , 2024
Abstract :

Oxidative stress from generation of increased reactive oxygen species or has been reported to play an important role in dementia. Oxidative stress due to free radicals of oxygen or reactive oxygen species could be precipitating factors in the etiology of dementia. Apomorphine has been reported to have neuroprotective effects. To monitor memory enhancing and neuroprotective effects of apomorphine, we determined the antioxidant enzymes activities, lipid peroxidation, acetylcholine esterase (AChE) activity in brain and plasma, following repetitive administration of apomorphine in rat model of dementia. Biogenic amine levels were also monitored in hippocampus. Repeated administration of scopolamine was taken as an animal model of dementia. Decreased glutathione peroxidase, superoxide dismutase and catalase activities were observed in these animal models of dementia. While increased lipid peroxidation was also observed in the brain and plasma samples. The results showed significant effects of apomorphine. The activities of antioxidant enzymes displayed increased activities in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly higher in brain and plasma of apomorphine treated rats. Superoxide dismutase (SOD) was significantly decreased in plasma of scopolamine injected rats; and a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in scopolamine treated rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM). Short-term memory and long-term memory was impaired significantly in scopolamine treated rats, which was prevented by apomorphine. Moreover, a marked decrease in biogenic amines was also found in the brain of scopolamine treated rats and was reverted in apomorphine treated rats. Results showed that scopolamine-treatment induced memory impairment and induced oxidative stress in rats as compared to saline-treated controls. These impairments were significantly restored by apomorphine administration. In conclusion, our data suggests that apomorphine at the dose of 1 mg/kg could be a potential therapeutic agent to treat dementia and related disorders.

PubMedSearch : Ikram_2024_Metab.Brain.Dis__
PubMedID: 38896206

Related information

Citations formats

Ikram H, Zakir R, Haleem DJ (2024)
Memory enhancing and neuroprotective effects of apomorphine in a rat model of dementia
Metabolic Brain Disease :

Ikram H, Zakir R, Haleem DJ (2024)
Metabolic Brain Disease :