Isshiki_2014_Nat.Commun_5_4742

Reference

Title : Enhanced synapse remodelling as a common phenotype in mouse models of autism - Isshiki_2014_Nat.Commun_5_4742
Author(s) : Isshiki M , Tanaka S , Kuriu T , Tabuchi K , Takumi T , Okabe S
Ref : Nat Commun , 5 :4742 , 2014
Abstract :

Developmental deficits in neuronal connectivity are considered to be present in patients with autism spectrum disorders (ASDs). Here we examine this possibility by using in vivo spine imaging in the early postnatal cortex of ASD mouse models. Spines are classified by the presence of either the excitatory postsynaptic marker PSD-95 or the inhibitory postsynaptic marker gephyrin. ASD mouse models show consistent upregulation in the dynamics of PSD-95-positive spines, which may subsequently contribute to stable synaptic connectivity. In contrast, spines receiving inputs from the thalamus, detected by the presence of gephyrin clusters, are larger, highly stable and unaffected in ASD mouse models. Importantly, two distinct mouse models, human 15q11-13 duplication and neuroligin-3 R451C point mutation, show highly similar phenotypes in spine dynamics. This selective impairment in dynamics of PSD-95-positive spines receiving intracortical projections may be a core component of early pathological changes and be a potential target of early intervention.

PubMedSearch : Isshiki_2014_Nat.Commun_5_4742
PubMedID: 25144834

Related information

Citations formats

Isshiki M, Tanaka S, Kuriu T, Tabuchi K, Takumi T, Okabe S (2014)
Enhanced synapse remodelling as a common phenotype in mouse models of autism
Nat Commun 5 :4742

Isshiki M, Tanaka S, Kuriu T, Tabuchi K, Takumi T, Okabe S (2014)
Nat Commun 5 :4742