Ji_2012_ScientificWorldJournal_2012_823201

Reference

Title : Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer's disease - Ji_2012_ScientificWorldJournal_2012_823201
Author(s) : Ji HF , Shen L
Ref : ScientificWorldJournal , 2012 :823201 , 2012
Abstract :

The natural isoquinoline alkaloid berberine possesses potential to treat Alzheimer's disease (AD) by targeting multiple pathogenic factors. In the present study, docking simulations were performed to gain deeper insights into the molecular basis of berberine's inhibitory effects against the important pathogenic enzymes of AD, that is, acetylcholinesterase, butyrylcholinesterase, and two isoforms of monoamine oxidase. It was found that the theoretical binding affinities of berberine to the four enzymes are very close to the experimental values, which verify the methodology. Further inspection to the binding modes found that hydrophobic interactions between the hydrophobic surface of berberine and neighboring hydrophobic residues are the principal forces contributing to the ligand-receptor interactions. Although berberine cation also has potential to form electrostatic interaction with neighboring residues, it is interesting to find that electrostatic force is excluded in the four cases unexpectedly. These results have important implications for the berberine-based anti-AD drug design.

PubMedSearch : Ji_2012_ScientificWorldJournal_2012_823201
PubMedID: 22262957

Related information

Inhibitor Berberine

Citations formats

Ji HF, Shen L (2012)
Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer's disease
ScientificWorldJournal 2012 :823201

Ji HF, Shen L (2012)
ScientificWorldJournal 2012 :823201