Liu_2023_Bioelectrochemistry_156_108599

Reference

Title : ZnO-rGO-based electrochemical biosensor for the detection of organophosphorus pesticides - Liu_2023_Bioelectrochemistry_156_108599
Author(s) : Liu Y , Xiao Y , Zhang Y , Gao X , Wang H , Niu B , Li W
Ref : Bioelectrochemistry , 156 :108599 , 2023
Abstract :

The accurate determination of organophosphorus pesticide residues is of great importance for human disease monitoring and environmental safety. Numerous detection methods exist, among which sensitive monitoring of organophosphorus compounds using electrochemical sensors has gradually become a research hotspot. This paper used acetylcholinesterase (AChE) as an indicator anchored on a zinc oxide-reduced graphene oxide (ZnO-rGO) composite rich in active sites, in which green non-toxic zinc oxide (ZnO) nanomaterials were uniformly distributed on the reduced graphene for rapid detection of organophosphorus. The effects of different ratios of ZnO to reduced graphene on the performance of ZnO-rGO nanocomposites were investigated. The AChE/ZnO-rGO biosensor detects organophosphorus by electrochemical inhibition of acetylcholinesterase in the presence of organophosphorus. The developed electrochemical biosensor has high selectivity and good linearity, and the ZnO-rGO nanocomposite as a matrix for immobilization of acetylcholinesterase and detection of organophosphorus has the potential for highly sensitive pesticide detection.

PubMedSearch : Liu_2023_Bioelectrochemistry_156_108599
PubMedID: 37988979

Related information

Citations formats

Liu Y, Xiao Y, Zhang Y, Gao X, Wang H, Niu B, Li W (2023)
ZnO-rGO-based electrochemical biosensor for the detection of organophosphorus pesticides
Bioelectrochemistry 156 :108599

Liu Y, Xiao Y, Zhang Y, Gao X, Wang H, Niu B, Li W (2023)
Bioelectrochemistry 156 :108599