Malenka_1992_Neuron_9_121

Reference

Title : Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation - Malenka_1992_Neuron_9_121
Author(s) : Malenka RC , Lancaster B , Zucker RS
Ref : Neuron , 9 :121 , 1992
Abstract :

The induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells requires a rise in postsynaptic intracellular Ca2+ concentration ([Ca2+]i). To determine the time for which Ca2+ must remain elevated to induce LTP, the photolabile Ca2+ buffer diazo-4 was used to limit the duration of the rise in postsynaptic [Ca2+]i following a tetanus. The affinity of diazo-4 for Ca2+ increases approximately 1600-fold upon flash photolysis, permitting almost instantaneous buffering of [Ca2+]i without disturbing resting [Ca2+]i prior to the flash. Photolysis of diazo-4 1 s following the start of the tetanus blocked LTP, while delaying photolysis for more than 2 s had no discernible effect on LTP. Photolyzing diazo-4 at intermediate delays (1.5-2 s) or reducing photolysis of diazo-4 often resulted in short-term potentiation (STP). These results indicate that a tetanus-induced rise in postsynaptic [Ca2+]i lasting at most 2-2.5 s is sufficient to generate LTP. Smaller increases or shorter duration rises in [Ca2+]i may result in STP.

PubMedSearch : Malenka_1992_Neuron_9_121
PubMedID: 1632966

Related information

Citations formats

Malenka RC, Lancaster B, Zucker RS (1992)
Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation
Neuron 9 :121

Malenka RC, Lancaster B, Zucker RS (1992)
Neuron 9 :121