Title : On the mechanism of a mammalian neuronal type nicotinic acetylcholine receptor investigated by a rapid chemical kinetic technique. Detection and characterization of a short-lived, previously unobserved, main receptor form in PC12 cells - Matsubara_1992_Biochemistry_31_5477 |
Author(s) : Matsubara N , Hess GP |
Ref : Biochemistry , 31 :5477 , 1992 |
Abstract :
The mammalian nicotinic acetylcholine receptor in PC12 cells has many properties characteristic of the neuronal receptors involved in key chemical reactions that are responsible for signal transmission between cells of the nervous system. This report describes initial investigations of the mechanism of this receptor using a rapid chemical kinetic technique with a time resolution of 20 ms, which represents a 250-fold improvement over the best time resolution (5 s) employed in previous studies. Carbamoylcholine, a stable analogue of the neurotransmitter acetylcholine, was the activating ligand used, and the concentration of open transmembrane receptor-channels in PC12 cells was measured by recording whole-cell currents at pH 7.4, 21-23 degrees C, and a transmembrane voltage of -60 mV. Two receptor forms that account for 80% and 20% of the receptor-controlled current were detected; the main receptor form, accounting for 80% of the whole-cell current, desensitized completely before the first measurements had been made in previous studies. Only the main receptor form has been investigated so far using the new method. The constants of a mechanism that accounts for the concentration of the open transmembrane receptor-channel over a 100-fold range of carbamoylcholine concentration were evaluated: the dissociation constant of the site controlling channel opening (K1 = 2.0 mM), the channel-opening equilibrium constant (phi -1 = 5.0), and the dissociation constant of an inhibitory site to which carbamoylcholine binds (KR = 6.5 mM). These evaluated constants allow one to calculate Po, the conditional probability that at a given concentration of carbamoylcholine the receptor-channel is open. Po was also determined in the presence of 2 mM carbamoylcholine by an independent method, the single-channel current-recording technique, and the agreement between the Po values obtained in two independent ways is within experimental error. This result indicates that the time resolution of the chemical kinetic technique employed was sufficient to evaluate the constants pertaining to the active state of the receptor, which forms a transmembrane channel, before its conversion to desensitized receptor forms with different properties. Previous kinetic measurements with a time resolution of 5 s showed that many compounds, such as anesthetic-like molecules, nerve growth factor, and substance P, modify the function of the neuronal receptor in PC12 cells or react specifically with the neuronal but not with the muscle receptor, for example, some toxins. |
PubMedSearch : Matsubara_1992_Biochemistry_31_5477 |
PubMedID: 1377021 |
Matsubara N, Hess GP (1992)
On the mechanism of a mammalian neuronal type nicotinic acetylcholine receptor investigated by a rapid chemical kinetic technique. Detection and characterization of a short-lived, previously unobserved, main receptor form in PC12 cells
Biochemistry
31 :5477
Matsubara N, Hess GP (1992)
Biochemistry
31 :5477