Mentlein_1993_Eur.J.Biochem_214_829

Reference

Title : Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum - Mentlein_1993_Eur.J.Biochem_214_829
Author(s) : Mentlein R , Gallwitz B , Schmidt WE
Ref : European Journal of Biochemistry , 214 :829 , 1993
Abstract : Peptides of the glucagon/vasoactive-intestinal-peptide (VIP) peptide family share a considerable sequence similarity at their N-terminus. They either start with Tyr-Ala, His-Ala or His-Ser which might be in part potential targets for dipeptidyl-peptidase IV, a highly specialized aminopeptidase removing dipeptides only from peptides with N-terminal penultimate proline or alanine. Growth-hormone-releasing factor (1-29)amide and gastric inhibitory peptide/glucose-dependent insulinotropic peptide (GIP) with terminal Tyr-Ala as well as glucagon-like peptide-1(7-36)amide/insulinotropin [GLP-1(7-36)amide] and peptide histidine methionine (PHM) with terminal His-Ala were hydrolysed to their des-Xaa-Ala derivatives by dipeptidyl-peptidase IV purified from human placenta. VIP with terminal His-Ser was not significantly degraded by the peptidase. The kinetics of the hydrolysis of GIP, GLP-1(7-36)amide and PHM were analyzed in detail. For these peptides Km values of 4-34 microM and Vmax values of 0.6-3.8 mumol.min-1.mg protein-1 were determined for the purified peptidase which should allow their enzymic degradation also at physiological, nanomolar concentrations. When human serum was incubated with GIP or GLP-1(7-36)amide the same fragments as with the purified dipeptidyl-peptidase IV, namely the des-Xaa-Ala peptides and Tyr-Ala in the case of GIP or His-Ala in the case of GLP-1(7-36)amide, were identified as the main degradation products of these peptide hormones. Incorporation of inhibitors specific for dipeptidyl-peptidase IV, 1 mM Lys-pyrrolidide or 0.1 mM diprotin A (Ile-Pro-Ile), completely abolished the production of these fragments by serum. It is concluded that dipeptidyl-peptidase IV initiates the metabolism of GIP and GLP-1(7-36)amide in human serum. Since an intact N-terminus is obligate for the biological activity of the members of the glucagon/VIP peptide family [e. g. GIP(3-42) is known to be inactive to release insulin in the presence of glucose as does intact GIP], dipeptidyl-peptidase-IV action inactivates these peptide hormones. The relevance of this finding for their inactivation and their determination by immunoassays is discussed.
ESTHER : Mentlein_1993_Eur.J.Biochem_214_829
PubMedSearch : Mentlein_1993_Eur.J.Biochem_214_829
PubMedID: 8100523

Related information

Citations formats

Mentlein R, Gallwitz B, Schmidt WE (1993)
Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum
European Journal of Biochemistry 214 :829

Mentlein R, Gallwitz B, Schmidt WE (1993)
European Journal of Biochemistry 214 :829