Title : Neurotoxicity, Behavior, and Lethal Effects of Cadmium, Microplastics, and Their Mixtures on Pomatoschistus microps Juveniles from Two Wild Populations Exposed under Laboratory Conditions-Implications to Environmental and Human Risk Assessment - Miranda_2019_Int.J.Environ.Res.Public.Health_16_ |
Author(s) : Miranda T , Vieira LR , Guilhermino L |
Ref : Int J Environ Research Public Health , 16 : , 2019 |
Abstract :
Microplastics (MPs) were found to modulate the toxicity of other pollutants but the knowledge on the topic is still limited. The goals of this study were to investigate the short-term toxicity of cadmium (Cd) to wild Pomatochistus microps juveniles, the potential modulation of acute Cd toxicity by 1-5 microm polyethylene MPs in this species, and possible differences of sensitivity to Cd and MPs-Cd mixtures between juveniles from two distinct wild populations. Juveniles were collected in the estuaries of Minho (M-est) and Lima (L-est) Rivers (NW Portugal). One 96 h bioassay with M-est juveniles and another one with L-est juveniles were carried out in laboratory conditions. Each bioassay had 12 treatments: control, 5 Cd concentrations, 1 MPs concentration, and 5 MPs-Cd mixtures. No significant differences in Cd-induced mortality between juveniles from distinct estuaries or between juveniles exposed to Cd alone and those exposed to MPs-Cd mixtures were found. The total 96h LC10 and LC50 of Cd alone were 2 mg/L (95% CI: 0-4 mg/L) and 8 mg/L (95% CI: 2-17 mg/L), respectively. Cd alone significantly decreased the post-exposure predatory performance (PEPP) of M-est (>/=6 mg/L) and L-est juveniles (>/=3 mg/L), and acetylcholinesterase (AChE) activity of M-est juveniles (13 mg/L). MPs alone (0.14 mg/L) significantly reduced the PEPP and AChE activity of L-est juveniles but not of M-est juveniles. MPs-Cd mixtures (3-13 mg/L of Cd + 0.14 mg/L of MPs) significantly inhibited the PEPP of juveniles from both estuaries and AChE of L-est estuary juveniles but not of M-est juveniles. Evidences of toxicological interactions, namely antagonism, between MPs and Cd were found. Overall, the results indicate that MPs modulated the sub-lethal toxic effects of Cd in wild P. microps juveniles, especially neurotoxicity. Moreover, the environmental conditions of the natural habitats to which juveniles were exposed during pre-developmental phases influence the sub-lethal toxicity of Cd, MPs, and their mixtures. The implications to environmental and human risk assessment are discussed and further research is needed. |
PubMedSearch : Miranda_2019_Int.J.Environ.Res.Public.Health_16_ |
PubMedID: 31405089 |
Miranda T, Vieira LR, Guilhermino L (2019)
Neurotoxicity, Behavior, and Lethal Effects of Cadmium, Microplastics, and Their Mixtures on Pomatoschistus microps Juveniles from Two Wild Populations Exposed under Laboratory Conditions-Implications to Environmental and Human Risk Assessment
Int J Environ Research Public Health
16 :
Miranda T, Vieira LR, Guilhermino L (2019)
Int J Environ Research Public Health
16 :