Moog_2019_Microb.Cell.Fact_18_171

Reference

Title : Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation - Moog_2019_Microb.Cell.Fact_18_171
Author(s) : Moog D , Schmitt J , Senger J , Zarzycki J , Rexer KH , Linne U , Erb T , Maier UG
Ref : Microb Cell Fact , 18 :171 , 2019
Abstract :

BACKGROUND: The biological degradation of plastics is a promising method to counter the increasing pollution of our planet with artificial polymers and to develop eco-friendly recycling strategies. Polyethylene terephthalate (PET) is a thermoplast industrially produced from fossil feedstocks since the 1940s, nowadays prevalently used in bottle packaging and textiles. Although established industrial processes for PET recycling exist, large amounts of PET still end up in the environment-a significant portion thereof in the world's oceans. In 2016, Ideonella sakaiensis, a bacterium possessing the ability to degrade PET and use the degradation products as a sole carbon source for growth, was isolated. I. sakaiensis expresses a key enzyme responsible for the breakdown of PET into monomers: PETase. This hydrolase might possess huge potential for the development of biological PET degradation and recycling processes as well as bioremediation approaches of environmental plastic waste. RESULTS: Using the photosynthetic microalga Phaeodactylum tricornutum as a chassis we generated a microbial cell factory capable of producing and secreting an engineered version of PETase into the surrounding culture medium. Initial degradation experiments using culture supernatant at 30 degrees C showed that PETase possessed activity against PET and the copolymer polyethylene terephthalate glycol (PETG) with an approximately 80-fold higher turnover of low crystallinity PETG compared to bottle PET. Moreover, we show that diatom produced PETase was active against industrially shredded PET in a saltwater-based environment even at mesophilic temperatures (21 degrees C). The products resulting from the degradation of the PET substrate were mainly terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalic acid (MHET) estimated to be formed in the micromolar range under the selected reaction conditions. CONCLUSION: We provide a promising and eco-friendly solution for biological decomposition of PET waste in a saltwater-based environment by using a eukaryotic microalga instead of a bacterium as a model system. Our results show that via synthetic biology the diatom P. tricornutum indeed could be converted into a valuable chassis for biological PET degradation. Overall, this proof of principle study demonstrates the potential of the diatom system for future biotechnological applications in biological PET degradation especially for bioremediation approaches of PET polluted seawater.

PubMedSearch : Moog_2019_Microb.Cell.Fact_18_171
PubMedID: 31601227

Related information

Citations formats

Moog D, Schmitt J, Senger J, Zarzycki J, Rexer KH, Linne U, Erb T, Maier UG (2019)
Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation
Microb Cell Fact 18 :171

Moog D, Schmitt J, Senger J, Zarzycki J, Rexer KH, Linne U, Erb T, Maier UG (2019)
Microb Cell Fact 18 :171