Moran_2001_Toxicol.Appl.Pharmacol_172_150

Reference

Title : Analysis of the toxic effects of linoleic acid, 12,13-cis-epoxyoctadecenoic acid, and 12,13-dihydroxyoctadecenoic acid in rabbit renal cortical mitochondria - Moran_2001_Toxicol.Appl.Pharmacol_172_150
Author(s) : Moran JH , Nowak G , Grant DF
Ref : Toxicol Appl Pharmacol , 172 :150 , 2001
Abstract :

P450 epoxidation of linoleic acid has been associated with many pathological conditions that often lead to acute renal failure. However, there is only suggestive evidence that linoleic acid monoepoxides and/or linoleic diols directly induce mitochondrial dysfunction. Using isolated rabbit renal cortical mitochondria (RCM), we found that linoleic acid (50 microM) and the linoleic acid monoepoxide, cis-12,13-epoxy-9-octadecenoic acid (12,13-EOA, 50 microM) increased state 4 and oligomycin-insensitive respiration and reduced state 3 and oligomycin-sensitive respiration. Concomitant with these effects, linoleic acid and 12,13-EOA decreased mitochondrial membrane potential (DeltaPsi). In contrast, the hydrolyzed product of 12,13-EOA, 12,13-dihydroxyoctadecenoic acid (12,13-DHOA, 50 microM), had no effect on state 3, state 4, oligomycin-sensitive, and oligomycin-insensitive respiration, and DeltaPsi. Neither linoleic acid or its metabolites altered uncoupled respiration, which suggests that these compounds have no affect on electron transport chain in RCM. Nucleotides such as ATP (0.5 mM) and GDP (0.5 mM) partially prevented the decrease in DeltaPsi but did not attenuate the increase in oligomycin-insensitive respiration after exposure to linoleic acid (50 microM) and 12,13-EOA (50 microM). These results demonstrate that linoleic acid metabolism to the 12,13-DHOA is a detoxification pathway that prevents mitochondrial dysfunction in RCM. The increase in state 4 respiration concomitant with decreases in state 3 respiration and DeltaPsi suggest that, in addition to uncoupling effects, linoleic acid and 12,13-EOA may have other effects, such as alterations of mitochondrial membranes. The inability of ATP and GDP to fully attenuate the uncoupling effects of linoleic acid and 12,13-EOA suggests that these effects are mediated through a nucleotide-independent mechanism.

PubMedSearch : Moran_2001_Toxicol.Appl.Pharmacol_172_150
PubMedID: 11298501

Related information

Citations formats

Moran JH, Nowak G, Grant DF (2001)
Analysis of the toxic effects of linoleic acid, 12,13-cis-epoxyoctadecenoic acid, and 12,13-dihydroxyoctadecenoic acid in rabbit renal cortical mitochondria
Toxicol Appl Pharmacol 172 :150

Moran JH, Nowak G, Grant DF (2001)
Toxicol Appl Pharmacol 172 :150