Nguyen_2016_Elife_5_

Reference

Title : Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses - Nguyen_2016_Elife_5_
Author(s) : Nguyen QA , Horn ME , Nicoll RA
Ref : Elife , 5 : , 2016
Abstract :

Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively.

PubMedSearch : Nguyen_2016_Elife_5_
PubMedID: 27805570

Related information

Citations formats

Nguyen QA, Horn ME, Nicoll RA (2016)
Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses
Elife 5 :

Nguyen QA, Horn ME, Nicoll RA (2016)
Elife 5 :