Pedro_2013_PLoS.One_8_e75232

Reference

Title : 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities - Pedro_2013_PLoS.One_8_e75232
Author(s) : Pedro MP , Vilcaes AA , Tomatis VM , Oliveira RG , Gomez GA , Daniotti JL
Ref : PLoS ONE , 8 :e75232 , 2013
Abstract :

S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT), while deacylation requires acyl-protein thioesterases (APT), with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP) is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.

PubMedSearch : Pedro_2013_PLoS.One_8_e75232
PubMedID: 24098372

Related information

Inhibitor 2-Bromopalmitate

Citations formats

Pedro MP, Vilcaes AA, Tomatis VM, Oliveira RG, Gomez GA, Daniotti JL (2013)
2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities
PLoS ONE 8 :e75232

Pedro MP, Vilcaes AA, Tomatis VM, Oliveira RG, Gomez GA, Daniotti JL (2013)
PLoS ONE 8 :e75232