Title : Huperzine A regulates amyloid precursor protein processing via protein kinase C and mitogen-activated protein kinase pathways in neuroblastoma SK-N-SH cells over-expressing wild type human amyloid precursor protein 695 - Peng_2007_Neurosci_150_386 |
Author(s) : Peng Y , Lee DY , Jiang L , Ma Z , Schachter SC , Lemere CA |
Ref : Neuroscience , 150 :386 , 2007 |
Abstract :
Alpha-secretase (alpha-secretase), cleaves the amyloid precursor protein (APP) within the amyloid-beta (Abeta) sequence, resulting in the release of a secreted fragment of APP (alphaAPPs) and precluding Abeta generation. We investigated the effects of the acetylcholinesterase inhibitor, huperzine A (Hup A), on APP processing and Abeta generation in human neuroblastoma SK-N-SH cells overexpressing wild-type human APP695. Hup A dose-dependently (0-10 microM) increased alphaAPPs release. Therefore, we evaluated two alpha-secretase candidates, a disintegrin and metalloprotease (ADAM) 10 and ADAM17 in Hup A-induced non-amyloidogenic APP metabolism. Hup A enhanced the level of ADAM10, and the inhibitor of tumor necrosis factor-alpha converting enzyme (TACE)/ADAM17 inhibited the Hup A-induced rise in alphaAPPs levels, further suggesting Hup A directed APP metabolism toward the non-amyloidogenic alpha-secretase pathway. Hup A had no effect on Abeta generation in this cell line. The steady-state levels of full-length APP and cell viability were unaffected by Hup A. Alpha-APPs release induced by Hup A treatment was significantly reduced by muscarinic acetylcholine receptor antagonists (particularly by an M1 antagonist), protein kinase C (PKC) inhibitors, GF109203X and calphostin C, and the mitogen-activated kinase kinase (MEK) inhibitors, U0126 and PD98059. Furthermore, Hup A markedly increased the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, which was blocked by treatment with U0126 and PD98059. In addition, Hup A inhibited acetylcholinesterase activity by 20% in neuroblastoma cells. Our results indicate that the activation of muscarinic acetylcholine receptors, PKC and MAP kinase may be involved in Hup A-induced alphaAPPs secretion in neuroblastoma cells and suggest multiple pharmacological mechanisms of Hup A regarding the treatment of Alzheimer's disease (AD). |
PubMedSearch : Peng_2007_Neurosci_150_386 |
PubMedID: 17945434 |
Peng Y, Lee DY, Jiang L, Ma Z, Schachter SC, Lemere CA (2007)
Huperzine A regulates amyloid precursor protein processing via protein kinase C and mitogen-activated protein kinase pathways in neuroblastoma SK-N-SH cells over-expressing wild type human amyloid precursor protein 695
Neuroscience
150 :386
Peng Y, Lee DY, Jiang L, Ma Z, Schachter SC, Lemere CA (2007)
Neuroscience
150 :386