Ranz_2007_PLoS.Biol_5_E152

Reference

Title : Principles of genome evolution in the Drosophila melanogaster species group - Ranz_2007_PLoS.Biol_5_e152
Author(s) : Ranz JM , Maurin D , Chan YS , von Grotthuss M , Hillier LW , Roote J , Ashburner M , Bergman CM
Ref : PLoS Biol , 5 :e152 , 2007
Abstract :

That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance.

PubMedSearch : Ranz_2007_PLoS.Biol_5_e152
PubMedID: 17550304
Gene_locus related to this paper: drome-GH02439 , droya-ACHE , droya-aes04 , droya-b4itg2 , droya-b4itg6 , droya-b4itu9 , droya-b4iuv4 , droya-b4iuv5 , droya-b4nxe6 , droya-b4nxg5 , droya-b4nxg6 , droya-b4nxg8 , droya-b4ny57 , droya-b4ny58 , droya-b4ny86 , droya-b4nzz8 , droya-b4p3h4 , droya-b4p3x8 , droya-b4p5g8 , droya-b4p6l9 , droya-b4p6r1 , droya-b4p6r2 , droya-b4p8w7 , droya-b4p241 , droya-b4p774 , droya-b4pat9 , droya-b4pd22 , droya-b4pd70 , droya-b4pdm8 , droya-b4pff9 , droya-b4pga7 , droya-b4pgu0 , droya-b4pka2 , droya-b4plh2 , droya-b4pmv5 , droya-b4pn92 , droya-b4pp65 , droya-b4prg6B , droya-b4prg9 , droya-b4prh3 , droya-b4prh4 , droya-b4prh6 , droya-b4prh7 , droya-b4q0g5 , droya-EST6 , droya-b4p2y4

Related information

Gene_locus drome-GH02439    droya-ACHE    droya-aes04    droya-b4itg2    droya-b4itg6    droya-b4itu9    droya-b4iuv4    droya-b4iuv5    droya-b4nxe6    droya-b4nxg5    droya-b4nxg6    droya-b4nxg8    droya-b4ny57    droya-b4ny58    droya-b4ny86    droya-b4nzz8    droya-b4p3h4    droya-b4p3x8    droya-b4p5g8    droya-b4p6l9    droya-b4p6r1    droya-b4p6r2    droya-b4p8w7    droya-b4p241    droya-b4p774    droya-b4pat9    droya-b4pd22    droya-b4pd70    droya-b4pdm8    droya-b4pff9    droya-b4pga7    droya-b4pgu0    droya-b4pka2    droya-b4plh2    droya-b4pmv5    droya-b4pn92    droya-b4pp65    droya-b4prg6B    droya-b4prg9    droya-b4prh3    droya-b4prh4    droya-b4prh6    droya-b4prh7    droya-b4q0g5    droya-EST6    droya-b4p2y4
Gene_locus_frgt droya-b4iur7    droya-b4iuv3    droya-b4iw10    droya-b4prg2    droya-b4prg4    droya-b4prg5    droya-b4prg6A    droya-b4prh1    droya-a0a0r1e8h6

Citations formats

Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, Ashburner M, Bergman CM (2007)
Principles of genome evolution in the Drosophila melanogaster species group
PLoS Biol 5 :e152

Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, Ashburner M, Bergman CM (2007)
PLoS Biol 5 :e152