Ribeiro_1996_Prog.Brain.Res_109_231

Reference

Title : Purinergic regulation of acetylcholine release - Ribeiro_1996_Prog.Brain.Res_109_231
Author(s) : Ribeiro JA , Cunha RA , Correia-de-Sa P , Sebastiao AM
Ref : Prog Brain Res , 109 :231 , 1996
Abstract :

At the neuromuscular junction and possibly also at the synaptic level in the brain, the main sequence of events (see Fig. 5) that involves purines in modulation of ACh release includes the following observations: (1) storage of ATP and its release either together with, or independently of acetylcholine. ATP is also released from the post-junctional component. Adenosine as such is released either from the motor nerve terminals or from the post-junctional component. (2) There is extracellular hydrolysis of ATP to adenosine, which is the active substance to modulate transmitter release. The key enzyme in the conversion of AMP into adenosine is the ecto 5'-nucleotidase. When ecto-5'-nucleotidase is not available (e.g. in cholinergic nerve terminals of the cerebral cortex) ATP as such exerts the neuromodulatory role normally fulfilled by adenosine. (3) Both the inhibition and the excitation induced by adenosine on ACh release in the rat is inactivated through up-take and deamination. (4) Adenosine-induced inhibition of ACh release is mediated via A1 receptors and the excitation via A2a receptors. The A2a receptors are positively coupled to the adenylate cyclase/cyclic AMP system, whereas the presynaptic A1 receptors (a) may be negatively linked to adenylate cyclase and (b) to phospholipase C, and, upon stimulation, (c) increase potassium conductance and (d) decrease calcium conductance. (5) Activation of A2a receptors is essential for substances that facilitate ACh release (e.g. CGRP, forskolin) to exert their effects, as well as for induction of nicotinic autofacilitatory receptor desensitization. (6) There are interactions between A1 and A2a receptors. Thus, the net adenosine neuromodulatory response is the resultant, at each moment, of the relative degree of activation of each one of these receptors. This relative activation depends upon the intensity (frequency, pulse duration) of stimulation of the motor nerve terminals. (7) Adenosine released as such seems to preferentially activate A1 receptors, whereas the adenosine formed from metabolism of adenine nucleotides prefers to activate the A2a receptors. In conclusion, to find out precisely what occurs with ACh in transmitting its message at the synaptic level, one has to consider the subtle ways used by purines to modulate the ACh response. It therefore appears of interest that pharmacological and therapeutic strategies use this knowledge to approach cholinergic transmission deficiencies based upon reduction of ACh release.

PubMedSearch : Ribeiro_1996_Prog.Brain.Res_109_231
PubMedID: 9009712

Related information

Citations formats

Ribeiro JA, Cunha RA, Correia-de-Sa P, Sebastiao AM (1996)
Purinergic regulation of acetylcholine release
Prog Brain Res 109 :231

Ribeiro JA, Cunha RA, Correia-de-Sa P, Sebastiao AM (1996)
Prog Brain Res 109 :231