Rodrigues_2019_Environ.Sci.Pollut.Res.Int_26_227

Reference

Title : Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment - Rodrigues_2019_Environ.Sci.Pollut.Res.Int_26_227
Author(s) : Rodrigues S , Antunes SC , Correia AT , Nunes B
Ref : Environ Sci Pollut Res Int , 26 :227 , 2019
Abstract :

During the last decades, the presence of antibiotics in different aquatic compartments has raised increasing interest and concern, since these compounds are usually persistent and bioactive pseudo pollutants. Erythromycin (ERY) is a macrolide antibiotic, prescribed for human and veterinary medicines but also used in aquaculture and livestock production. Taking into account the recorded environmental levels of ERY, its toxicity to non-target organisms has become a still poorly studied issue, particularly in fish. In this sense, this study investigated the acute and chronic effects of realistic levels of ERY on Oncorhynchus mykiss (rainbow trout), namely, through the quantification of the activity of enzymes involved in different biochemical pathways, such as detoxification (phase I-7-ethoxyresorufin O-deethylase (EROD); phase II-glutathione S-transferases (GSTs), uridine-diphosphate-glucuronosyltransferases (UGTs)), neurotransmission (acetylcholinesterase (AChE)), and energy production (lactate dehydrogenase (LDH)). Both types of exposure caused significant increases in EROD activity in liver of O. mykiss; an increase in GST activity in gills after chronic exposure was also observed. UGT branchial activity was significantly depressed, following the long-term exposure. Thus, EROD, GST, and UGT enzymatic forms seem to be involved in the biotransformation of ERY. In terms of neurotransmission and preferential pathway of energy homeostasis, the exposed organisms appear not to have been affected, as there were no significant alterations in terms of AChE and LDH activities, respectively. The here-obtained data suggest that the observed alterations in terms of detoxification enzymes may have prevented the establishment of a set of toxic responses, namely, neurotoxic and metabolic disorders.

PubMedSearch : Rodrigues_2019_Environ.Sci.Pollut.Res.Int_26_227
PubMedID: 30387066

Related information

Citations formats

Rodrigues S, Antunes SC, Correia AT, Nunes B (2019)
Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment
Environ Sci Pollut Res Int 26 :227

Rodrigues S, Antunes SC, Correia AT, Nunes B (2019)
Environ Sci Pollut Res Int 26 :227