Romani_2005_Environ.Toxicol.Chem_24_2879

Reference

Title : Effects of chlorpyrifos on the catalytic efficiency and expression level of acetylcholinesterases in the bivalve mollusk Scapharca inaequivalvis - Romani_2005_Environ.Toxicol.Chem_24_2879
Author(s) : Romani R , Isani G , De Santis A , Giovannini E , Rosi G
Ref : Environ Toxicol Chem , 24 :2879 , 2005
Abstract :

Three acetylcholinesterase (AChE) forms were detected and recovered from foot or gill tissues of the benthonic bivalve mollusk Scapharca inaequivalvis. A study was performed to investigate changes in catalytic and hydrodynamic features of these enzymes, as well as in their expression levels, after a 4-d or a 15-d exposure to a sublethal concentration (0.1 microl/L) of the pesticide chlorpyrifos (CPF). Both considered organs hold, in either CPF-exposed or untreated animals, two nonamphiphilic AChE forms, G2 and G4, which copurified on a procainamide-containing affinity gel and were separated by density gradient centrifugation. A third AChE form, an amphiphilic membrane-anchored G2, was also purified on the same affinity matrix from both organs. All enzymatic forms are true AChEs and are poorly inhibited by CPE They show different increases in the maximum velocity (Vmax) and in the Michaelis constant (Km) values after CPF exposure. Consequently, catalytic efficiency of AChEs, as defined by the ratio Vmax:Km, rises in the gills and drops in the foot. This would produce an overexpression of AChE-specific mRNAs. The effect was longer lasting in the foot. The combined results indicate that overexpression of enzymes in the presence of organophosphate (OP) may be a consequence of OP resistance itself. Again, the resistance of the organism to CPF seem to depend mainly on the resulting increase in AChE content.

PubMedSearch : Romani_2005_Environ.Toxicol.Chem_24_2879
PubMedID: 16398125

Related information

Citations formats

Romani R, Isani G, De Santis A, Giovannini E, Rosi G (2005)
Effects of chlorpyrifos on the catalytic efficiency and expression level of acetylcholinesterases in the bivalve mollusk Scapharca inaequivalvis
Environ Toxicol Chem 24 :2879

Romani R, Isani G, De Santis A, Giovannini E, Rosi G (2005)
Environ Toxicol Chem 24 :2879