Salmon_1999_Clin.Exp.Pharmacol.Physiol_26_596

Reference

Title : Human erythrocyte but not brain acetylcholinesterase hydrolyses heroin to morphine - Salmon_1999_Clin.Exp.Pharmacol.Physiol_26_596
Author(s) : Salmon AY , Goren Z , Avissar Y , Soreq H
Ref : Clinical & Experimental Pharmacology & Physiology , 26 :596 , 1999
Abstract :

1. In human blood, heroin is rapidly hydrolysed by sequential deacylation of two ester bonds to yield first 6-monoacetylmorphine (6-MAM), then morphine. 2. Serum butyrylcholinesterase (BCHE) hydrolyses heroin to 6-MAM with a catalytic efficiency of 4.5/min per mumol/L, but does not proceed to produce morphine. 3. In vitro, human erythrocyte acetylcholinesterase (AChE) hydrolyses heroin to 6-MAM, with a catalytic efficiency of 0.5/min per mumol/L under first-order kinetics. Moreover, erythrocyte AChE, but not BCHE is capable of further hydrolysing 6-MAM to morphine, albeit at a considerably slower rate. 4. Both hydrolysis steps by erythrocyte AChE were totally blocked by the selective AChE inhibitor BW284c51 but were not blocked by the BCHE-specific inhibitor, iso-OMPA (tetraisopropylpyrophosphoramide). 5. The brain synaptic form of AChE, which differs from the erythrocyte enzyme in its C-terminus, was incapable of hydrolysing heroin. 6. Heroin suppressed substrate hydrolysis by antibody-immobilized erythrocyte but not by brain AChE. 7. These findings reveal a new metabolic role for erythrocyte AChE, the biological function of which is as yet unexplained, and demonstrate distinct biochemical properties for the two AChE variants, which were previously considered catalytically indistinguishable.

PubMedSearch : Salmon_1999_Clin.Exp.Pharmacol.Physiol_26_596
PubMedID: 10474772

Related information

Citations formats

Salmon AY, Goren Z, Avissar Y, Soreq H (1999)
Human erythrocyte but not brain acetylcholinesterase hydrolyses heroin to morphine
Clinical & Experimental Pharmacology & Physiology 26 :596

Salmon AY, Goren Z, Avissar Y, Soreq H (1999)
Clinical & Experimental Pharmacology & Physiology 26 :596