Soliman_2023_J.Genet.Eng.Biotechnol_21_165

Reference

Title : A scalable overexpression of a thermostable recombinant poly-histidine tag carboxyl esterase under lambda promoter: purification, characterization, and protein modelling - Soliman_2023_J.Genet.Eng.Biotechnol_21_165
Author(s) : Soliman NA , Ali SM , Duab MEA , Abdel-Fattah YR
Ref : J Genet Eng Biotechnol , 21 :165 , 2023
Abstract :

BACKGROUND: As a white biotechnological trend, esterases are thought to be among the most active enzymes' classes in biocatalysis and synthesis of industrially importance organic compounds. Esterases are used in many applications such as the manufacture of pharmaceuticals, cosmetics, leather, textile, paper, food, dairy products, detergents, and treatment of some environmental pollutants. RESULTS: A poly-histidine moiety was added to the C-terminal end of the Geobacillus sp. gene encoding carboxyl esterase (EstB, ac: KJ735452) to facilitate one-step purification. This recombinant protein was successfully expressed in Escherichia coli (E. coli) under control of Lambda promoter (lambda). An open reading frame (ORF) of 1500 bps encoding a polypeptide of 499 amino acid residues and a calculated molecular weight (54.7 kD) was identified as carboxyl-esterase B due to its conserved glycine-X-serine-X-glycine motif (G-X-S-X-G) and its high similarity toward other carboxyl esterases, where the 3-D tertiary structure of EstB was determined based on high homology % (94.8) to Est55. The expression was scaled up using 7-L stirred tank bioreactor, where a maximum yield of enzyme was obtained after 3.5 h with SEA 51.76 U/mg protein. The expressed protein was purified until unity using immobilized metal affinity chromatography (IMAC) charged with cobalt and then characterized. The purified enzyme was most active at pH 8.0 and remarkably stable at pH (8-10). Temperature optimum was recorded at 65 degreesC, and it kept 70% of its activity after 1-h exposure to 60 degreesC. The active half-live of enzyme was 25 min at 70 degreesC and a calculated T melting (Tm) at 70 degreesC. The determined reaction kinetics Michaelis-Menten constant (K(m)), maximum velocity rate (V(max)), the turnover number (K(cat)), and catalytic efficiency (K(cat)/K(m)) of the pure enzyme were found 22.756 mM, 164.47 U/ml (59.6 min(-1)), and (2.619 mol/ min), respectively. CONCLUSION: Creation of a recombinant 6 x -His estB derived from a thermophile Geobacillus sp. was performed successfully and then overexpressed under lambda-promoter. In a bench scale bioreactor, the overexpression was grown up, followed by one-step purification and biochemical characterization. The recorded promising pH and temperature stability properties suggest that this expressed carboxyl esterase could be used in many industrial sectors.

PubMedSearch : Soliman_2023_J.Genet.Eng.Biotechnol_21_165
PubMedID: 38085387
Gene_locus related to this paper: geoka-q5kvf2

Related information

Gene_locus geoka-q5kvf2

Citations formats

Soliman NA, Ali SM, Duab MEA, Abdel-Fattah YR (2023)
A scalable overexpression of a thermostable recombinant poly-histidine tag carboxyl esterase under lambda promoter: purification, characterization, and protein modelling
J Genet Eng Biotechnol 21 :165

Soliman NA, Ali SM, Duab MEA, Abdel-Fattah YR (2023)
J Genet Eng Biotechnol 21 :165