Title : Diverse Functions of Plasma PAF-AH in Tumorigenesis - Stafforini_2015_Enzymes_38_157 |
Author(s) : Stafforini DM |
Ref : Enzymes , 38 :157 , 2015 |
Abstract :
This chapter is focused on the role of the plasma form of platelet-activating factor-acetylhydrolase (PAF-AH), heretofore referred to as PAF-AH, in tumorigenic responses. Biochemical and other properties of this enzyme were discussed in detail in chapter "Plasma PAF-AH (PLA2G7): Biochemical Properties, Association with LDLs and HDLs, and Regulation of Expression" by Stafforini and in other chapters. Although phospholipases tend not to be drivers of tumorigenesis themselves, these enzymes and the lipid mediators whose levels they regulate interact with a variety of oncogenes and tumor suppressors [1]. Like other phospholipases, the functions of PAF-AH in cancer likely are related to its ability to regulate the levels of lipid mediators that participate in cellular processes related to initial tumorigenic events (e.g., proliferation, growth, inflammation) and/or spreading of the disease (e.g., matrix metalloproteinase secretion, actin cytoskeleton reorganization, migration, and angiogenesis) [1]. The importance of substrates and products of PAF-AH on key cellular functions has been evaluated in cell-based analyses which revealed that these metabolites can have pro- and antitumorigenic functions. Studies in genetically engineered mice lacking PAF-AH expression and genetic manipulation of PAF-AH levels in cancer cells demonstrated diverse functions of the protein in models of melanoma, prostate cancer, colon cancer, and others. The following sections highlight lessons learned from studies in cell lines and in mouse models regarding the diversity of functions of PAF-AH in cancer, and the potential of PAFAH transcripts, protein, and/or activity levels to become cancer biomarkers and therapeutic targets. |
PubMedSearch : Stafforini_2015_Enzymes_38_157 |
PubMedID: 26612652 |
Stafforini DM (2015)
Diverse Functions of Plasma PAF-AH in Tumorigenesis
Enzymes
38 :157
Stafforini DM (2015)
Enzymes
38 :157