Sun_2023_Mol.Plant__

Reference

Title : Strigolactone and gibberellin signalling coordinately regulates metabolic adaptations to changes in nitrogen availability in rice - Sun_2023_Mol.Plant__
Author(s) : Sun H , Guo X , Zhu X , Gu P , Zhang W , Tao W , Wang D , Wu Y , Zhao Q , Xu G , Fu X , Zhang Y
Ref : Mol Plant , : , 2023
Abstract : Modern semi-dwarf rice varieties of the 'Green Revolution' require a high nitrogen (N) fertilizer supply to obtain a high yield. A better understanding of the interplay between N metabolic and developmental processes is required for improved N use efficiency (NUE) and agricultural sustainability. Here, we show that strigolactones (SLs) modulate root metabolic and developmental adaptations to low N availability, which ensure efficient uptake and translocation of available N. The key repressor DWARF 53 (D53) of the SL signalling interacts with the transcription factor GROWTH-REGULATING FACTOR 4 (GRF4) and prevents GRF4 from binding to its target gene promoters. N limitation induces the accumulation of SLs, which in turn promotes SL-mediated degradation of D53, leading to the release of GRF4 and thus promoting the genes expression associated with N metabolism. N limitation also induces degradation of the rice DELLA protein SLENDER RICE 1 (SLR1) in the D14- and D53-dependent manners, and that is effective for the release of GRF4 from the competitive inhibition caused by SLR1. Our findings reveal a previously unknown mechanism underlying SL and gibberellin crosstalk in response to N availability, which advances our understanding of plant growth-metabolic coordination that can be useful to improve NUE in high-yield crops.
ESTHER : Sun_2023_Mol.Plant__
PubMedSearch : Sun_2023_Mol.Plant__
PubMedID: 36683328

Related information

Citations formats

Sun H, Guo X, Zhu X, Gu P, Zhang W, Tao W, Wang D, Wu Y, Zhao Q, Xu G, Fu X, Zhang Y (2023)
Strigolactone and gibberellin signalling coordinately regulates metabolic adaptations to changes in nitrogen availability in rice
Mol Plant :

Sun H, Guo X, Zhu X, Gu P, Zhang W, Tao W, Wang D, Wu Y, Zhao Q, Xu G, Fu X, Zhang Y (2023)
Mol Plant :