Tan_2019_J.Trace.Elem.Med.Biol_52_199

Reference

Title : A multifunctional bis-(-)-nor-meptazinol-oxalamide hybrid with metal-chelating property ameliorates Cu(II)-induced spatial learning and memory deficits via preventing neuroinflammation and oxido-nitrosative stress in mice - Tan_2019_J.Trace.Elem.Med.Biol_52_199
Author(s) : Tan X , Zhou Y , Gong P , Guan H , Wu B , Hou L , Feng X , Zheng W , Li J
Ref : J Trace Elem Med Biol , 52 :199 , 2019
Abstract : Excess copper exposure is a risk factor of neurodegeneration related to Alzheimer's disease (AD). Evidence indicates that, besides promoting amyloid beta aggregation, activation of neuroinflammation and oxido-nitrosative stress (two key pathophysiological processes of AD) may also play important roles in Cu(II)-induced neuronal injury. Therefore, the copper-chelating strategy has gained attention in search for new anti-AD drugs. We previously reported a novel multifunctional compound N(1),N(2)-bis(3-(S)-meptazinol-propyl) oxalamide (ZLA), a bis-(-)-nor-meptazinol-oxalamide hybrid with properties of dual binding site acetylcholinesterase (AChE) inhibition and Cu(II)/Zn(II) chelation. The present study was aimed to explore its effect on cognitive deficits caused by intrahippocampal injection of Cu(II) in mice. Results showed that ZLA (2, 5 mg/kg; i.p.) treatment significantly ameliorated the Cu(II)-induced impairment of hippocampus-dependent learning and memory, whereas rivastigmine, an AChE inhibitor showing a similar potency of enzyme inhibition to ZLA, had no obvious effect. Immunohistochemical and Western blot analyses revealed that ZLA attenuated the decrease in hippocampal expression of microtubule-associated protein 2 (MAP2, a dendritic marker) in Cu(II)-challenged mice. Further analysis showed that ZLA suppressed the Cu(II)-evoked microglial activation. Moreover, it inhibited the Cu(II)-evoked production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and IL-1beta and expression of inducible nitric oxide synthase in the hippocampus. The Cu(II)-induced oxidative and nitrosative stress in the hippocampus was also attenuated after ZLA treatment. Collectively, these results suggest that ZLA ameliorates the Cu(II)-caused cognitive deficits. Inhibition of neuroinflammation and oxido-nitrosative stress, and thus ameliorating neuronal injury, may be the potential mechanism for the anti-amnesic effect of ZLA.
ESTHER : Tan_2019_J.Trace.Elem.Med.Biol_52_199
PubMedSearch : Tan_2019_J.Trace.Elem.Med.Biol_52_199
PubMedID: 30732883

Related information

Citations formats

Tan X, Zhou Y, Gong P, Guan H, Wu B, Hou L, Feng X, Zheng W, Li J (2019)
A multifunctional bis-(-)-nor-meptazinol-oxalamide hybrid with metal-chelating property ameliorates Cu(II)-induced spatial learning and memory deficits via preventing neuroinflammation and oxido-nitrosative stress in mice
J Trace Elem Med Biol 52 :199

Tan X, Zhou Y, Gong P, Guan H, Wu B, Hou L, Feng X, Zheng W, Li J (2019)
J Trace Elem Med Biol 52 :199