Then_2016_FEBS.Open.Bio_6_425

Reference

Title : A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate - Then_2016_FEBS.Open.Bio_6_425
Author(s) : Then J , Wei R , Oeser T , Gerdts A , Schmidt J , Barth M , Zimmermann W
Ref : FEBS Open Bio , 6 :425 , 2016
Abstract :

Elevated reaction temperatures are crucial for the efficient enzymatic degradation of polyethylene terephthalate (PET). A disulfide bridge was introduced to the polyester hydrolase TfCut2 to substitute its calcium binding site. The melting point of the resulting variant increased to 94.7 degreesC (wild-type TfCut2: 69.8 degreesC) and its half-inactivation temperature to 84.6 degreesC (TfCut2: 67.3 degreesC). The variant D204C-E253C-D174R obtained by introducing further mutations at vicinal residues showed a temperature optimum between 75 and 80 degreesC compared to 65 and 70 degreesC of the wild-type enzyme. The variant caused a weight loss of PET films of 25.0 +/- 0.8% (TfCut2: 0.3 +/- 0.1%) at 70 degreesC after a reaction time of 48 h. The results demonstrate that a highly efficient and calcium-independent thermostable polyester hydrolase can be obtained by replacing its calcium binding site with a disulfide bridge.

PubMedSearch : Then_2016_FEBS.Open.Bio_6_425
PubMedID: 27419048
Gene_locus related to this paper: thefu-q6a0i4

Related information

Gene_locus thefu-q6a0i4

Citations formats

Then J, Wei R, Oeser T, Gerdts A, Schmidt J, Barth M, Zimmermann W (2016)
A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate
FEBS Open Bio 6 :425

Then J, Wei R, Oeser T, Gerdts A, Schmidt J, Barth M, Zimmermann W (2016)
FEBS Open Bio 6 :425