Tunstall_2005_Metabolism_54_952

Reference

Title : Effect of elevated lipid concentrations on human skeletal muscle gene expression - Tunstall_2005_Metabolism_54_952
Author(s) : Tunstall RJ , Cameron-Smith D
Ref : Metabolism , 54 :952 , 2005
Abstract : Dietary fatty acids regulate the abundance and activity of various proteins involved in the regulation of fat oxidation by functioning as regulators of gene transcription. To determine whether the transcription of key lipid metabolic proteins necessary for fat metabolism within human skeletal muscle are regulated by acute elevations in circulating free fatty acid (FFA) concentrations, 7 healthy men underwent 3 randomized resting infusions of Intralipid (20%) with heparin sodium, saline and heparin sodium, or saline only for 5 hours. These infusions significantly elevated plasma FFA concentrations by 15-fold (to 1.67 +/- 0.13 mmol/L) in the Intralipid infusion trial, with modest elevations observed in the saline and heparin sodium and saline alone infusion groups (0.67 +/- 0.09 and 0.49 +/- 0.087 mmol/L, P < .01 both vs Intralipid infusion). Analysis of messenger RNA (mRNA) concentration demonstrated that pyruvate dehydrogenase kinase isoform 4 (PDK4) mRNA, a key negative regulator of glucose oxidation, was increased in all trials with a 24-fold response after Intralipid infusion, 15-fold after saline and heparin infusion, and 9-fold after saline alone. The PDK4 increases were not significantly different between the 3 trials. The mRNA concentration of the major uncoupling protein within skeletal muscle, uncoupling protein 3, was not elevated in parallel to the increased plasma FFA as similar ( approximately 2-fold) increases were evident in all trials. Additional genes involved in lipid transport (fatty acid translocase/CD36), oxidation (carnitine palmitoyltransferase I), and metabolism (1-acylglycerol-3-phosphate O -acyltransferase 1, hormone-sensitive lipase, and peroxisomal proliferator-activated receptor-gamma coactivator-1alpha) were not altered by increased circulating FFA concentrations. The present data demonstrate that of the genes analyzed that encode proteins that are key regulators of lipid homeostasis within skeletal muscle, only the PDK4 gene is uniquely sensitive to increasing FFA concentrations after increased plasma FFA achieved by intravenous lipid infusion.
ESTHER : Tunstall_2005_Metabolism_54_952
PubMedSearch : Tunstall_2005_Metabolism_54_952
PubMedID: 15988707

Related information

Citations formats

Tunstall RJ, Cameron-Smith D (2005)
Effect of elevated lipid concentrations on human skeletal muscle gene expression
Metabolism 54 :952

Tunstall RJ, Cameron-Smith D (2005)
Metabolism 54 :952