Uchitel_1992_Proc.Natl.Acad.Sci.U.S.A_89_3330

Reference

Title : P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses - Uchitel_1992_Proc.Natl.Acad.Sci.U.S.A_89_3330
Author(s) : Uchitel OD , Protti DA , Sanchez V , Cherksey BD , Sugimori M , Llinas R
Ref : Proc Natl Acad Sci U S A , 89 :3330 , 1992
Abstract :

We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel.

PubMedSearch : Uchitel_1992_Proc.Natl.Acad.Sci.U.S.A_89_3330
PubMedID: 1348859

Related information

Citations formats

Uchitel OD, Protti DA, Sanchez V, Cherksey BD, Sugimori M, Llinas R (1992)
P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses
Proc Natl Acad Sci U S A 89 :3330

Uchitel OD, Protti DA, Sanchez V, Cherksey BD, Sugimori M, Llinas R (1992)
Proc Natl Acad Sci U S A 89 :3330