Title : Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus - Vaughan_1995_J.Biol.Chem_270_17044 |
Author(s) : Vaughan A , Hemingway J |
Ref : Journal of Biological Chemistry , 270 :17044 , 1995 |
Abstract :
Organophosphorus insecticide resistance in Culex mosquitoes is commonly caused by increased activity of one or more esterases. The commonest phenotype involves elevation of the esterases Est alpha 2 (A2) and Est beta 2 (B2). A cDNA encoding the Est alpha 2 esterase has now been isolated from a Sri Lankan insecticide-resistant mosquito (Culex quinquefasciatus, Say) expression library. In line with a recently suggested nomenclature system (Karunaratne, S. H. P. P. (1994) Characterization of Multiple Variants of Carboxylesterases Which Are Involved in Insecticide Resistance in the Mosquito Culex quinquefasciatus. Ph.D. thesis, University of London), as the first sequenced variant of this esterase, it is now referred to as Est alpha 2(1). The full-length cDNA of est alpha 2(1) codes for a 540-amino acid protein, which has high homology with other esterases and lipases and belongs to the serine or B-esterase enzyme family. The predicted secondary structure of Est alpha 2(1) is similar to the consensus secondary structure of proteins within the esterase/lipase family where the secondary and tertiary structures have been resolved. The level of identity (approximately 47% at the amino acid level) between the est alpha 2(1) and the various Culex est beta (B1 and B2) cDNA alleles that have been cloned and sequenced suggests that the two esterase loci are closely related and arose originally from duplication of a common ancestral gene. The lack of a distinct hydrophobic signal sequence for Est alpha 2(1) and two possible N-linked glycosylation sites, both situated close to the active site serine, suggest that it is a nonglycosylated protein that is not exported from the cell. Southern and dot blot analysis of genomic DNA from various insecticide-resistant and susceptible mosquito strains show that the est alpha 2(1) gene, like est beta 2(1), is amplified in resistant strains. The restriction fragment length polymorphism patterns, after probing Southern blots of EcoRI-digested genomic DNA with esta alpha 2(1) cDNA, show that the amplified and nonamplified est alpha alleles differ in the resistant and susceptible Sri Lankan mosquitoes. |
PubMedSearch : Vaughan_1995_J.Biol.Chem_270_17044 |
PubMedID: 7622525 |
Gene_locus related to this paper: culpi-ESTA |
Gene_locus | culpi-ESTA |
Vaughan A, Hemingway J (1995)
Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus
Journal of Biological Chemistry
270 :17044
Vaughan A, Hemingway J (1995)
Journal of Biological Chemistry
270 :17044