Wang_2017_Water.Res_116_332

Reference

Title : Comammox in drinking water systems - Wang_2017_Water.Res_116_332
Author(s) : Wang Y , Ma L , Mao Y , Jiang X , Xia Y , Yu K , Li B , Zhang T
Ref : Water Res , 116 :332 , 2017
Abstract :

The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems.

PubMedSearch : Wang_2017_Water.Res_116_332
PubMedID: 28390307
Gene_locus related to this paper: 9bact-a0a1w9j1f6 , 9prot-a0a1w9iez0 , 9prot-a0a1w9i2z8 , 9prot-a0a1w9hbq4 , 9prot-a0a1w9jph2

Related information

Citations formats

Wang Y, Ma L, Mao Y, Jiang X, Xia Y, Yu K, Li B, Zhang T (2017)
Comammox in drinking water systems
Water Res 116 :332

Wang Y, Ma L, Mao Y, Jiang X, Xia Y, Yu K, Li B, Zhang T (2017)
Water Res 116 :332