Title : Sequence-Responsive Multifunctional Supramolecular Nanomicelles Act on the Regression of TNBC and Its Lung Metastasis via Synergic Pyroptosis-Mediated Immune Activation - Wang_2023_Small__e2305101 |
Author(s) : Wang X , Li Y , Hasrat K , Yang L , Qi Z |
Ref : Small , :e2305101 , 2023 |
Abstract :
Design of effective nanodrugs to modulate the immunosuppression of tumor microenvironment is a desirable approach to boost the clinical tumor-therapeutic effect. Supramolecular nanomicelles PolyMN-TO-8, which are constructed by self-assembling supramolecular host MTX-MPEG2000, guest NPX-2S, and TO-8 through hydrophobic forces, have excellent stability and responsiveness to carboxylesterase and glutathione in turn. In vivo studies validate that PolyMN-TO-8 enable to trigger pyroptosis-mediated immunogenic cell death under laser, avoiding the occurrence of immune dysregulation simultaneously. This therapeutic mode strengthens dendritic cells' maturation and accelerates the infiltration of CD8(+) T cells into tumors through moderate activation of pro-inflammatory factors with elimination of immune-escape, ultimately making the tumor inhibition rate as high as 87.44% via synergistic functions of photodynamic therapy, photothermal therapy, chemotherapy, etc. The loss of immune-escape quickens the infiltration of CD8(+) T cells into lungs, and further eschews the generation of tumor nodules in it. Chemotherapy, the release of interferon-gamma, and immune memory effect also strengthen the defense against metastasis. The generation of O(2) catalyzed by PolyMN-TO-8 under laser is indispensable for tumor metastasis inhibition undoubtedly. |
PubMedSearch : Wang_2023_Small__e2305101 |
PubMedID: 37635105 |
Wang X, Li Y, Hasrat K, Yang L, Qi Z (2023)
Sequence-Responsive Multifunctional Supramolecular Nanomicelles Act on the Regression of TNBC and Its Lung Metastasis via Synergic Pyroptosis-Mediated Immune Activation
Small
:e2305101
Wang X, Li Y, Hasrat K, Yang L, Qi Z (2023)
Small
:e2305101