Title : Depsidone Derivatives and a Cyclopeptide Produced by Marine Fungus Aspergillus unguis under Chemical Induction and by Its Plasma Induced Mutant - Yang_2018_Molecules_23_ |
Author(s) : Yang WC , Bao HY , Liu YY , Nie YY , Yang JM , Hong PZ , Zhang Y |
Ref : Molecules , 23 : , 2018 |
Abstract :
A new depsidone derivative (1), aspergillusidone G, was isolated from a marine fungus Aspergillus unguis, together with eight known depsidones (29) and a cyclic peptide (10): agonodepside A (2), nornidulin (3), nidulin (4), aspergillusidone F (5), unguinol (6), aspergillusidone C (7), 2-chlorounguinol (8), aspergillusidone A (9), and unguisin A (10). Compounds 14 and 79 were obtained from the plasma induced mutant of this fungus, while 5, 6, and 10 were isolated from the original strain under chemical induction. Their structures were identified using spectroscopic analysis, as well as by comparison with literature data. The HPLC fingerprint analysis indicates that chemical induction and plasma mutagenesis effectively influenced the secondary metabolism, which may be due to their regulation in the key steps in depsidone biosynthesis. In bioassays, compound 9 inhibited acetylcholinesterase (AChE) with IC50 in 56.75 muM. Compounds 1, 5, 7, 8, and 9 showed moderate to strong activity towards different microbes. Compounds 3, 4, and 5 exhibited potent larvicidality against brine shrimp. In docking studies, higher negative CDOCKER interaction energy and richer strong interactions between AChE and 9 explained the greater activity of 9 compared to 1. Chemical induction and plasma mutagenesis can be used as tools to expand the chemodiversity of fungi and obtain useful natural products. |
PubMedSearch : Yang_2018_Molecules_23_ |
PubMedID: 30177651 |
Yang WC, Bao HY, Liu YY, Nie YY, Yang JM, Hong PZ, Zhang Y (2018)
Depsidone Derivatives and a Cyclopeptide Produced by Marine Fungus Aspergillus unguis under Chemical Induction and by Its Plasma Induced Mutant
Molecules
23 :
Yang WC, Bao HY, Liu YY, Nie YY, Yang JM, Hong PZ, Zhang Y (2018)
Molecules
23 :