Zhang_2024_Poult.Sci_103_103612

Reference

Title : Identification and biochemical characterization of a carboxylesterase gene associated with beta-cypermethrin resistance in Dermanyssus gallinae - Zhang_2024_Poult.Sci_103_103612
Author(s) : Zhang X , Zhang Y , Xu K , Qin J , Wang D , Xu L , Wang C
Ref : Poult Sci , 103 :103612 , 2024
Abstract :

Dermanyssus gallinae is a major hematophagous ectoparasite in layer hens. Although the acaricide beta-cypermethrin has been used to control mites worldwide, D. gallinae has developed resistance to this compound. Carboxylesterases (CarEs) are important detoxification enzymes that confer resistance to beta-cypermethrin in arthropods. However, CarEs associated with beta-cypermethrin resistance in D. gallinae have not yet been functionally characterized. Here, we isolated a CarE gene (Deg-CarE) from D. gallinae and assayed its activity. The results revealed significantly higher expression of Deg-CarE in the beta-cypermethrin-resistant strain (RS) than in the susceptible strain (SS) toward alpha-naphthyl acetate (alpha-NA) and beta-naphthyl acetate (beta-NA). These findings suggest that enhanced esterase activities might have contributed to beta-cypermethrin resistance in D. gallinae. Quantitative real-time PCR analysis revealed that Deg-CarE expression levels were significantly higher in adults than in other life stages. Although Deg-CarE was upregulated in the RS, significant differences in gene copy numbers were not observed. Additionally, Deg-CarE expression was significantly induced by beta-cypermethrin in both the SS and RS. Moreover, silencing Deg-CarE via RNA interference decreased the enzyme activity and increased the susceptibility of the RS to beta-cypermethrin, confirming that Deg-CarE is crucial for beta-cypermethrin detoxification. Finally, recombinant Deg-CarE (rDeg-CarE) expressed in Escherichia coli displayed high enzymatic activity toward alpha/beta-NA. However, metabolic analysis indicated that rDeg-CarE did not directly metabolize beta-cypermethrin. The collective findings indicate that D. gallinae resistance to beta-cypermethrin is associated with elevated CarEs protein activity and increased Deg-CarE expression levels. These findings provide insights into the metabolic resistance of D. gallinae and offer scientific guidance for the management and control of D. gallinae.

PubMedSearch : Zhang_2024_Poult.Sci_103_103612
PubMedID: 38492248

Related information

Citations formats

Zhang X, Zhang Y, Xu K, Qin J, Wang D, Xu L, Wang C (2024)
Identification and biochemical characterization of a carboxylesterase gene associated with beta-cypermethrin resistance in Dermanyssus gallinae
Poult Sci 103 :103612

Zhang X, Zhang Y, Xu K, Qin J, Wang D, Xu L, Wang C (2024)
Poult Sci 103 :103612