van der Meulen_2008_Biomacromolecules_9_3404

Reference

Title : Polymers from functional macrolactones as potential biomaterials: enzymatic ring opening polymerization, biodegradation, and biocompatibility - van der Meulen_2008_Biomacromolecules_9_3404
Author(s) : van der Meulen I , de Geus M , Antheunis H , Deumens R , Joosten EA , Koning CE , Heise A
Ref : Biomacromolecules , 9 :3404 , 2008
Abstract :

We systematically investigated a series of polymers derived from macrolactones, namely, pentadecalactone, hexadecalactone, and their unsaturated analogues ambrettolide and globalide as potential biomaterials. By enzymatic ring-opening polymerization these monomers can conveniently be polymerized to high molecular weight. The polymers are highly crystalline with melting points around 95 degrees C for the saturated polymers and lower melting points for the unsaturated polymers (46-55 degrees C). All polymers are nontoxic as measured by an MTT assay for metabolic cell activity of a 3T3 mouse fibroblast cell line. Degradation studies showed no hydrolytic or enzymatic degradability of the polymers, which was ascribed to the high crystallinity and hydrophobicity of the materials. The unsaturated polymers were cross-linked in the melt, yielding fully amorphous transparent materials with a gel content of 97%.

PubMedSearch : van der Meulen_2008_Biomacromolecules_9_3404
PubMedID: 18975906

Related information

Citations formats

van der Meulen I, de Geus M, Antheunis H, Deumens R, Joosten EA, Koning CE, Heise A (2008)
Polymers from functional macrolactones as potential biomaterials: enzymatic ring opening polymerization, biodegradation, and biocompatibility
Biomacromolecules 9 :3404

van der Meulen I, de Geus M, Antheunis H, Deumens R, Joosten EA, Koning CE, Heise A (2008)
Biomacromolecules 9 :3404