Nadezhdin_2011_PLoS.One_6_e25418

Reference

Title : An alpha\/beta hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains - Nadezhdin_2011_PLoS.One_6_e25418
Author(s) : Nadezhdin EV , Brody MS , Price CW
Ref : PLoS ONE , 6 :e25418 , 2011
Abstract :

The RsbQ alpha/beta hydrolase and RsbP serine phosphatase form a signaling pair required to activate the general stress factor sigma(B) of Bacillus subtilis in response to energy limitation. RsbP has a predicted N-terminal Per-ARNT-Sim (PAS) domain, a central coiled-coil, and a C-terminal protein phosphatase M (PPM) domain. Previous studies support a model in which RsbQ provides an activity needed for PAS to regulate the phosphatase domain via the coiled-coil. RsbQ and the PAS domain (RsbP-PAS) therefore appear to form a sensory module. Here we test this hypothesis using bioinformatic and genetic analysis. We found 45 RsbQ and RsbP-PAS homologues encoded by adjacent genes in diverse bacteria, with PAS and a predicted coiled-coil fused to one of three output domains: PPM phosphatase (Gram positive bacteria), histidine protein kinase (Gram negative bacteria), and diguanylate cyclase (both lineages). Multiple alignment of the RsbP-PAS homologues suggested nine residues that distinguish the class. Alanine substitutions at four of these conferred a null phenotype in B. subtilis, indicating their functional importance. The F55A null substitution lay in the Falpha helix of an RsbP-PAS model. F55A inhibited interaction of RsbP with RsbQ in yeast two-hybrid and pull-down assays but did not significantly affect interaction of RsbP with itself. We propose that RsbQ directly contacts the PAS domains of an RsbP oligomer to provide the activating signal, which is propagated to the phosphatase domains via the coiled-coil. A similar mechanism would allow the RsbQ-PAS module to convey a common input signal to structurally diverse output domains, controlling a variety of physiological responses.

PubMedSearch : Nadezhdin_2011_PLoS.One_6_e25418
PubMedID: 21980452
Gene_locus related to this paper: bacsu-RsbQ

Related information

Gene_locus bacsu-RsbQ

Citations formats

Nadezhdin EV, Brody MS, Price CW (2011)
An alpha\/beta hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains
PLoS ONE 6 :e25418

Nadezhdin EV, Brody MS, Price CW (2011)
PLoS ONE 6 :e25418