Zhang_2019_J.Control.Release_296_14

Reference

Title : Reassembly of native components with donepezil to execute dual-missions in Alzheimer's disease therapy - Zhang_2019_J.Control.Release_296_14
Author(s) : Zhang H , Zhao Y , Yu M , Zhao Z , Liu P , Cheng H , Ji Y , Jin Y , Sun B , Zhou J , Ding Y
Ref : J Control Release , 296 :14 , 2019
Abstract :

Alzheimer's disease (AD) is a multifaceted and progressive neurodegenerative disease characterized by accumulation of amyloid-beta (Abeta) and deficits of acetylcholine. Accordingly, the intra-/extra-cerebral level of high density lipoprotein (HDL) is crucial on the pathogenesis of AD; and most of all, various HDL-protein subtypes play a double-edged role in AD pathology, of which apolipoprotein A-I (apoA-I) gives protective outcomes. Inspired from "HDL bionics", we proposed biologically reassembled nanodrugs, donepezil-loaded apolipoprotein A-I-reconstituted HDL (rHDL/Do) that concurrently executed dual-missions of Abeta-targeting clearance and acetylcholinesterase (AChE) inhibition in AD therapy. Once prepared, rHDL/Do nanodrug achieved high drug encapsulation efficiency of 90.47%, and mimicked the configurations and properties of natural lipoproteins aiming to significantly enhance BBB penetration and modulate Abeta-induced neuronal damage both in vitro and in vivo. Surface plasmon resonance (SPR) analysis confirmed that rHDL/Do facilitated microglial-mediated Abeta intake and degradation, demonstrating low KD value with Abeta affinity (2.45x10(-8) of Abeta monomer and 2.78x10(-8) of Abeta oligomer). In AD animal models, daily treatment of rHDL/Do efficiently inhibited AChE activity, ameliorated neurologic variation, promoted Abeta clearance, and rescued memory loss at a safe level. The collective findings indicated that the biological nanodrug was provided with the capacities of BBB penetration, Abeta capture and degradation via microglial cells, and cholinergic dysfunction amelioration after controlled donepezil release. In summary, rHDL/Do nanodrugs could offer a promising strategy to synergize both symptom control and disease modification in AD therapy.

PubMedSearch : Zhang_2019_J.Control.Release_296_14
PubMedID: 30639387

Related information

Citations formats

Zhang H, Zhao Y, Yu M, Zhao Z, Liu P, Cheng H, Ji Y, Jin Y, Sun B, Zhou J, Ding Y (2019)
Reassembly of native components with donepezil to execute dual-missions in Alzheimer's disease therapy
J Control Release 296 :14

Zhang H, Zhao Y, Yu M, Zhao Z, Liu P, Cheng H, Ji Y, Jin Y, Sun B, Zhou J, Ding Y (2019)
J Control Release 296 :14