Zhang_2014_Protein.Sci_23_110

Reference

Title : A method to rationally increase protein stability based on the charge-charge interaction, with application to lipase LipK107 - Zhang_2014_Protein.Sci_23_110
Author(s) : Zhang L , Tang X , Cui D , Yao Z , Gao B , Jiang S , Yin B , Yuan YA , Wei D
Ref : Protein Science , 23 :110 , 2014
Abstract :

We report a suite of enzyme redesign protocol based on the surface charge-charge interaction calculation, which is potentially applied to improve the stability of an enzyme without compromising its catalytic activity. Together with the experimental validation, we have released a suite of enzyme redesign algorithm Enzyme Thermal Stability System, written based on our model, for open access to meet the needs in wet labs. Lipk107, a lipase of a versatile industrial use, was chosen to test our software. Our calculation determined that four residues, D113, D149, D213, and D253, located on the surface of LipK107 were critical to the stability of the enzyme. The model was validated with mutagenesis at these four residues followed by stability and activity tests. LipK107 mutants D113A and D149K were more resistant to thermal inactivation with approximately 10 degrees C higher half-inactivation temperature than wild-type LipK107. Moreover, mutant D149K exhibited significant retention in residual activity under constant heat, showing a 14-fold increase in the half-inactivation time at 50 degrees C. Activity tests showed that these mutants retained the equal or higher specific activity, among which noteworthy was the mutant D253A with as much as 20% higher activity. We suggest that our protocol could be used as a general guideline to redesign protein enzymes with increased stabilities and enhanced activities.

PubMedSearch : Zhang_2014_Protein.Sci_23_110
PubMedID: 24353171
Gene_locus related to this paper: promi-c2lfd0

Related information

Gene_locus promi-c2lfd0

Citations formats

Zhang L, Tang X, Cui D, Yao Z, Gao B, Jiang S, Yin B, Yuan YA, Wei D (2014)
A method to rationally increase protein stability based on the charge-charge interaction, with application to lipase LipK107
Protein Science 23 :110

Zhang L, Tang X, Cui D, Yao Z, Gao B, Jiang S, Yin B, Yuan YA, Wei D (2014)
Protein Science 23 :110