Hung JH

References (2)

Title : Gene signatures of SARS-CoV\/SARS-CoV-2-infected ferret lungs in short- and long-term models - Liu_2020_Infect.Genet.Evol_85_104438
Author(s) : Liu HL , Yeh IJ , Phan NN , Wu YH , Yen MC , Hung JH , Chiao CC , Chen CF , Sun Z , Jiang JZ , Hsu HP , Wang CY , Lai MD
Ref : Infect Genet Evol , 85 :104438 , 2020
Abstract : Coronaviruses (CoVs) consist of six strains, and the severe acute respiratory syndrome coronavirus (SARS-CoV), newly found coronavirus (SARS-CoV-2) has rapidly spread leading to a global outbreak. The ferret (Mustela putorius furo) serves as a useful animal model for studying SARS-CoV/SARS-CoV-2 infection and developing therapeutic strategies. A holistic approach for distinguishing differences in gene signatures during disease progression is lacking. The present study discovered gene expression profiles of short-term (3 days) and long-term (14 days) ferret models after SARS-CoV/SARS-CoV-2 infection using a bioinformatics approach. Through Gene Ontology (GO) and MetaCore analyses, we found that the development of stemness signaling was related to short-term SARS-CoV/SARS-CoV-2 infection. In contrast, pathways involving extracellular matrix and immune responses were associated with long-term SARS-CoV/SARS-CoV-2 infection. Some highly expressed genes in both short- and long-term models played a crucial role in the progression of SARS-CoV/SARS-CoV-2 infection, including DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6, and ACADM. Meanwhile, we revealed that metabolic, glucocorticoid, and reactive oxygen species-associated networks were enriched in both short- and long-term infection models. The present study showed alterations in gene expressions from short-term to long-term SARS-CoV/SARS-CoV-2 infection. The current result provides an explanation of the pathophysiology for post-infectious sequelae and potential targets for treatment.
ESTHER : Liu_2020_Infect.Genet.Evol_85_104438
PubMedSearch : Liu_2020_Infect.Genet.Evol_85_104438
PubMedID: 32615317

Title : Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans - Lo_2012_J.Am.Chem.Soc_134_4709
Author(s) : Lo HC , Entwistle R , Guo CJ , Ahuja M , Szewczyk E , Hung JH , Chiang YM , Oakley BR , Wang CC
Ref : Journal of the American Chemical Society , 134 :4709 , 2012
Abstract : Meroterpenoids are a class of fungal natural products that are produced from polyketide and terpenoid precursors. An understanding of meroterpenoid biosynthesis at the genetic level should facilitate engineering of second-generation molecules and increasing production of first-generation compounds. The filamentous fungus Aspergillus nidulans has previously been found to produce two meroterpenoids, austinol and dehydroaustinol. Using targeted deletions that we created, we have determined that, surprisingly, two separate gene clusters are required for meroterpenoid biosynthesis. One is a cluster of four genes including a polyketide synthase gene, ausA. The second is a cluster of 10 additional genes including a prenyltransferase gene, ausN, located on a separate chromosome. Chemical analysis of mutant extracts enabled us to isolate 3,5-dimethylorsellinic acid and 10 additional meroterpenoids that are either intermediates or shunt products from the biosynthetic pathway. Six of them were identified as novel meroterpenoids in this study. Our data, in aggregate, allow us to propose a complete biosynthetic pathway for the A. nidulans meroterpenoids.
ESTHER : Lo_2012_J.Am.Chem.Soc_134_4709
PubMedSearch : Lo_2012_J.Am.Chem.Soc_134_4709
PubMedID: 22329759
Gene_locus related to this paper: emeni-q5atj7