Mishra J

References (4)

Title : Neuroprotective mechanism of losartan and its interaction with nimesulide against chronic fatigue stress - Kumar_2015_Inflammopharmacology_23_291
Author(s) : Kumar A , Singh B , Mishra J , Sah SP , Pottabathini R
Ref : Inflammopharmacology , 23 :291 , 2015
Abstract : Potential role of angiotensin-II and cyclooxygenase have been suggested in the pathophysiology of chronic fatigue stress. The present study has been designed to evaluate the neuroprotective effect of losartan and its interaction with nimesulide against chronic fatigue stress and related complications in mice. In the present study, male Laca mice (20-30 g) were subjected to running wheel activity test session (RWATS) for 6 min daily for 21 days. Losartan, nimesulide and their combinations were administered daily for 21 days, 45 min before being subjected to RWATS. Various behavioral and biochemical and neuroinflammatory mediators were assessed subsequently. 21 days RWATS treatment significantly decreased number of wheel rotations/6 min indicating fatigue stress like behaviors as compared to naive group. 21 days treatment with losartan (10 and 20 mg/kg, ip), nimesulide (5 and 10 mg/kg, po) and their combinations significantly improved behavior [increased number of wheel rotations, reversal of post-exercise fatigue, locomotor activity, antianxiety-like behavior (number of entries, latency to enter and time spent in mirror chamber), and memory performance (transfer latency in plus-maze performance task)], biochemical parameters (reduced serum corticosterone, brain lipid peroxidation, nitrite concentration, acetylcholinesterase activity, restored reduced glutathione levels and catalase activity) as compared to RWATS control. Besides, TNF-alpha, CRP levels were significantly attenuated by these drugs and their combinations as compared to control. The present study highlights the role of cyclooxygenase modulation in the neuroprotective effect of losartan against chronic fatigue stress-induced behavioral, biochemical and cellular alterations in mice.
ESTHER : Kumar_2015_Inflammopharmacology_23_291
PubMedSearch : Kumar_2015_Inflammopharmacology_23_291
PubMedID: 26122818

Title : Rosiglitazone Synergizes the Neuroprotective Effects of Valproic Acid Against Quinolinic Acid-Induced Neurotoxicity in Rats: Targeting PPARgamma and HDAC Pathways - Mishra_2014_Neurotox.Res_26_130
Author(s) : Mishra J , Chaudhary T , Kumar A
Ref : Neurotox Res , 26 :130 , 2014
Abstract : Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder which affects medium spiny GABAergic neurons mainly in the striatum. Oxidative damage, neuro-inflammation, apoptosis, protein aggregation, and signaling of neurotrophic factors are some of the common cellular pathways involved in HD. Quinolinic acid (QA) causes excitotoxicity by stimulating N-methyl-D-aspartate receptors via calcium overload leading to neurodegeneration. Neuroprotective potential of peroxisome proliferator activated receptor-gamma (PPARgamma) agonists and histone deacetylase (HDAC) inhibitors have been well documented in experimental models of neurodegenerative disorders; however, their exact mechanisms are not clear. Therefore, present study has been designed to explore possible neuroprotective mechanism of valproic acid (VPA) and its interaction with rosiglitazone against QA induced HD-like symptoms in rats. Single bilateral intrastriatal QA (200 nmol/2 mul saline) administration significantly caused motor incoordination, memory impairment, oxidative damage, mitochondrial dysfunction (complex I, II, II and IV), cellular alterations [tumor necrosis factor-alpha (TNF-alpha), caspase-3, brain derived neurotrophic factor, acetylcholinesterase], and striatal neurodegeneration as compared to sham group. Treatment with rosiglitazone (5, 10 mg/kg) and VPA (100, 200 mg/kg) for 21 days significantly attenuated these behavioral, biochemical, and cellular alterations as compared to control (QA 200 nmol) group. However, VPA (100 mg/kg) treatment in combination with rosiglitazone (5 mg/kg) for 21 days synergized their neuroprotective effect, which was significant as compared to their effects per se in QA-treated animals. The present study provides an evidence of possible interplay of PPARgamma agonists and HDAC inhibitors as a novel therapeutic strategy in the management of HD.
ESTHER : Mishra_2014_Neurotox.Res_26_130
PubMedSearch : Mishra_2014_Neurotox.Res_26_130
PubMedID: 24566814

Title : Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span - Du_2001_J.Lipid.Res_42_489
Author(s) : Du H , Heur M , Duanmu M , Grabowski GA , Hui DY , Witte DP , Mishra J
Ref : J Lipid Res , 42 :489 , 2001
Abstract : Lysosomal acid lipase (LAL) is essential for the hydrolysis of triglycerides (TG) and cholesteryl esters (CE) in lysosomes. A mouse model created by gene targeting produces no LAL mRNA, protein, or enzyme activity. The lal-/- mice appear normal at birth, survive into adulthood, and are fertile. Massive storage of TG and CE is observed in adult liver, adrenal glands, and small intestine. The age-dependent tissue and gross progression in this mouse model are detailed here. Although lal-/- mice can be bred to give homozygous litters, they die at ages of 7 to 8 months. The lal-/- mice develop enlargement of a single mesenteric lymph node that is full of stored lipids. At 6;-8 months of age, the lal-/- mice have completely absent inguinal, interscapular, and retroperitoneal white adipose tissue. In addition, brown adipose tissue is progressively lost. The plasma free fatty acid levels are significantly higher in lal-/- mice than age-matched lal+/+ mice, and plasma insulin levels were more elevated upon glucose challenge. Energy intake was also higher in lal-/- male mice, although age-matched body weights were not significantly altered from age-matched lal+/+ mice. Early in the disease course, hepatocytes are the main storage cell in the liver; by 3;-8 months, the lipid-stored Kupffer cells progressively fill the liver. The involvement of macrophages throughout the body of lal-/- mice provide evidence for a critical nonappreciated role of LAL in cellular cholesterol and fatty acid metabolism, adipocyte differentiation, and fat mobilization.
ESTHER : Du_2001_J.Lipid.Res_42_489
PubMedSearch : Du_2001_J.Lipid.Res_42_489
PubMedID: 11290820

Title : Enzyme therapy for lysosomal acid lipase deficiency in the mouse - Du_2001_Hum.Mol.Genet_10_1639
Author(s) : Du H , Schiavi S , Levine M , Mishra J , Heur M , Grabowski GA
Ref : Hum Mol Genet , 10 :1639 , 2001
Abstract : Lysosomal acid lipase (LAL) is the critical enzyme for the hydrolysis of the triglycerides (TG) and cholesteryl esters (CE) delivered to lysosomes. Its deficiency produces two human phenotypes, Wolman disease (WD) and cholesteryl ester storage disease (CESD). A targeted disruption of the LAL locus produced a null (lal( -/-)) mouse model that mimics human WD/CESD. The potential for enzyme therapy was tested using mannose terminated human LAL expressed in Pichia pastoris (phLAL), purified, and administered by tail vein injections to lal( -/-) mice. Mannose receptor (MR)-dependent uptake and lysosomal targeting of phLAL were evidenced ex vivo using competitive assays with MR-positive J774E cells, a murine monocyte/macrophage line, immunofluorescence and western blots. Following (bolus) IV injection, phLAL was detected in Kupffer cells, lung macrophages and intestinal macrophages in lal( -/-) mice. Two-month-old lal( -/-) mice received phLAL (1.5 U/dose) or saline injections once every 3 days for 30 days (10 doses). The treated lal( -/-) mice showed nearly complete resolution of hepatic yellow coloration; hepatic weight decreased by approximately 36% compared to PBS-treated lal( -/-) mice. Histologic analyses of numerous tissues from phLAL-treated mice showed reductions in macrophage lipid storage. TG and cholesterol levels decreased by approximately 50% in liver, 69% in spleen and 50% in small intestine. These studies provide feasibility for LAL enzyme therapy in human WD and CESD.
ESTHER : Du_2001_Hum.Mol.Genet_10_1639
PubMedSearch : Du_2001_Hum.Mol.Genet_10_1639
PubMedID: 11487567
Gene_locus related to this paper: mouse-1llip