Namba H

References (13)

Title : A simple method for the detection of abnormal brain regions in Alzheimer's disease patients using [11C]MP4A: comparison with [123I]IMP SPECT - Ota_2004_Ann.Nucl.Med_18_187
Author(s) : Ota T , Shinotoh H , Fukushi K , Nagatsuka S , Namba H , Iyo M , Aotsuka A , Tanaka N , Sato K , Shiraishi T , Tanada S , Arai H , Irie T
Ref : Ann Nucl Med , 18 :187 , 2004
Abstract : We have developed a radiolabeled lipophilic acetylcholine analogue, N-[11C]methylpiperidin-4-yl acetate ([11C]MP4A) to measure brain acetylcholinesterase (AChE) activity by positron emission tomography (PET) in vivo. Aiming to develop a new SPECT tracer similar to MP4A, we first proposed a simple method for diagnosing Alzheimer's disease (AD) using [11C]MP4A PET. We performed [11C]MP4A PET and N-isopropyl [123I]iodoamphetamine ([123I]IMP) SPECT in 13 patients with AD and in 17 normal controls (NC). We calculated the ratio of radioactivity of the cortical region of interest (ROI) to that of the cerebellum measured with [11C]MP4A PET (MP4A ratio) and the ratio of regional cerebral blood flow (rCBF) to that of the cerebellum measured with [123I]IMP SPECT (IMP ratio). Eleven cortical ROIs were placed in the frontal, sensorimotor, temporal, parietal, and occipital cortices in both hemispheres and in the posterior cingulate cortex, and z-score was calculated in each ROI in patients with AD compared with NC. When the z-score was 2 or more in a ROI, it was defined as a positive ROI. When a patient had 3 or more positive ROIs, the patient was diagnosed as having AD. The reduction in the MP4A ratio was greater than that in the IMP ratio in all cortical ROIs except for in the right parietal cortex and cingulate cortex in patients with AD. MP4A ratio method showed 92% sensitivity and the IMP ratio method 69% sensitivity for the diagnosis of AD. These results encourage us to develop a new SPECT tracer similar to MP4A for the diagnosis of AD.
ESTHER : Ota_2004_Ann.Nucl.Med_18_187
PubMedSearch : Ota_2004_Ann.Nucl.Med_18_187
PubMedID: 15233279

Title : The amygdala and Alzheimer's disease: positron emission tomographic study of the cholinergic system - Shinotoh_2003_Ann.N.Y.Acad.Sci_985_411
Author(s) : Shinotoh H , Fukushi K , Nagatsuka S , Tanaka N , Aotsuka A , Ota T , Namba H , Tanada S , Irie T
Ref : Annals of the New York Academy of Sciences , 985 :411 , 2003
Abstract : The primary transmitter deficit is cholinergic in Alzheimer's disease (AD), and the amygdala receives a major cholinergic projection from the nucleus basalis of Meynert (Ch4), which may play an important role in the retention of affective conditioning and/or memory consolidation. We measured brain acetylcholinesterase (AChE) activity in 54 patients with AD and in 22 normal controls by positron emission tomography and N-[(11)C]methylpiperidin-4-yl acetate to characterize the cholinergic pathology in AD. The k(3) values were calculated as an index of AChE activity in a three-compartment model analysis using the metabolite-corrected arterial input function. The k(3) values were highly significantly reduced by 20% in the cerebral neocortex (P <0.0001 in the two-tailed t test), 14% in the hippocampus (P <0.001), and 33% in the amygdala (P <0.0001) in AD patients compared with normal controls. The k(3) values were significantly correlated with the Mini-Mental State Examination scores in both the cerebral cortex (P <0.001) and the amygdala (P <0.05) in AD patients, supporting the cholinergic hypothesis of cognitive dysfuncion in AD. Further studies are required, however, to elucidate the specific role of the cholinergic deficit in the amygdala in the emotional and behavioral symptoms in AD.
ESTHER : Shinotoh_2003_Ann.N.Y.Acad.Sci_985_411
PubMedSearch : Shinotoh_2003_Ann.N.Y.Acad.Sci_985_411
PubMedID: 12724174

Title : Positron emission tomography: quantitative measurement of brain acetylcholinesterase activity using radiolabeled substrates - Namba_2002_Methods_27_242
Author(s) : Namba H , Fukushi K , Nagatsuka S , Iyo M , Shinotoh H , Tanada S , Irie T
Ref : Methods , 27 :242 , 2002
Abstract : A new method for quantitative measurement of brain acetylcholinesterase (AChE) activity in living human brain using positron emission tomography (PET) is described. We tested several radiolabeled lipophilic acetylcholine analogs, e.g., N-methylpiperidyl esters, which readily entered the brain via the blood-brain barrier, were hydrolyzed selectively by AChE, and were then trapped in the brain. Among them, and tested and N-[11C]methylpiperidin-4-yl acetate ([11C]MP4A) was chosen as the tracer for PET. Quantitative measurement of cortical AChE was accomplished by fitting the time course of cerebral radioactivity concentration measured by PET and the metabolite-corrected arterial plasma input function using a nonlinear least-squares fitting method. Normal control studies of subjects with a wide range in age (24-89 years) showed no decrease in AChE activity in the cerebral cortex with age. Studies on patients with Alzheimer's disease demonstrated a widespread reduction of AChE activity in the cerebral cortex (more profound in early-onset than in late-onset Alzheimer's disease). Parkinson's disease and progressive supranuclear palsy, clinically similar disorders, could be differentiated with [11C]MP4A/PET studies. Simple methods without using an arterial input function are also proposed. The method provides a quantitative measure of the cholinergic aspect of brain function and proved to be useful in diagnosis of neurodegenerative disorders including Alzheimer's disease.
ESTHER : Namba_2002_Methods_27_242
PubMedSearch : Namba_2002_Methods_27_242
PubMedID: 12183113

Title : Positron emission tomographic measurement of brain acetylcholinesterase activity using N-[(11)C]methylpiperidin-4-yl acetate without arterial blood sampling: methodology of shape analysis and its diagnostic power for Alzheimer's disease - Tanaka_2001_J.Cereb.Blood.Flow.Metab_21_295
Author(s) : Tanaka N , Fukushi K , Shinotoh H , Nagatsuka S , Namba H , Iyo M , Aotsuka A , Ota T , Tanada S , Irie T
Ref : Journal of Cerebral Blood Flow & Metabolism , 21 :295 , 2001
Abstract : N-[11C]methylpiperidin-4-yl acetate ([11C]MP4A) is a radiotracer that has been used successfully for the quantitative measurement of acetylcholinesterase (AChE) activity in the human brain with positron emission tomography (PET) using a standard compartment model analysis and a metabolite-corrected arterial input function. In the current study, the authors evaluated the applicability of a simple kinetic analysis without blood sampling, namely shape analysis. First, the authors used computer simulations to analyze factors that affect the precision and bias of shape analysis, then optimized the shape analysis procedure for [11C]MP4A. Before shape analysis execution, the later part of dynamic PET data except for the initial 3 minutes were smoothed by fitting to a bi-exponential function followed by linear interpolation of 8 data points between each of adjacent scan frames. Simulations showed that shape analysis yielded estimates of regional metabolic rates of [11C]MP4A by AChE (k3) with acceptable precision and bias in brain regions with low k3 values such as neocortex. Estimates in regions with higher k3 values became progressively more inaccurate. The authors then applied the method to [11C]MP4A PET data in 10 healthy subjects and 20 patients with Alzheimer's disease (AD). There was a highly significant linear correlation in regional k3 estimates between shape and compartment analyses (300 neocortical regions, [shape k3] = 0.93 x [NLS k3], r = 0.89, P < 0.001). Significant reductions in k3 estimates of frontal, temporal, parietal, occipital, and sensorimotor cerebral cortices in patients with AD as compared with controls were observed when using shape analysis (P < 0.013, two-tailed t-test), although these reductions (17% to 20%) were somewhat less than those obtained by compartment analysis (22% to 27%). The sensitivity of shape analysis for detecting neocortical regions with abnormally low k3 in the 20 patients with AD (92 out of 200 regions, 46%) also was somewhat less than compartment analysis (136 out of 200 regions, 68%). However, taking its simplicity and noninvasiveness into account, the authors conclude that quantitative measurement of neocortical AChE activity with shape analysis and [11C]MP4A PET is practical and useful for clinical diagnosis of AD.
ESTHER : Tanaka_2001_J.Cereb.Blood.Flow.Metab_21_295
PubMedSearch : Tanaka_2001_J.Cereb.Blood.Flow.Metab_21_295
PubMedID: 11295884

Title : Kinetic analysis of [(11)C]MP4A using a high-radioactivity brain region that represents an integrated input function for measurement of cerebral acetylcholinesterase activity without arterial blood sampling - Nagatsuka_2001_J.Cereb.Blood.Flow.Metab_21_1354
Author(s) : Nagatsuka Si S , Fukushi K , Shinotoh H , Namba H , Iyo M , Tanaka N , Aotsuka A , Ota T , Tanada S , Irie T
Ref : Journal of Cerebral Blood Flow & Metabolism , 21 :1354 , 2001
Abstract : N -[(11)C]methylpiperidin-4-yl acetate ([(11)C]MP4A) is an acetylcholine analog. It has been used successfully for the quantitative measurement of acetylcholinesterase (AChE) activity in the human brain with positron emission tomography (PET). [(11)C]MP4A is specifically hydrolyzed by AChE in the brain to a hydrophilic metabolite, which is irreversibly trapped locally in the brain. The authors propose a new method of kinetic analysis of brain AChE activity by PET without arterial blood sampling, that is, reference tissue-based linear least squares (RLS) analysis. In this method, cerebellum or striatum is used as a reference tissue. These regions, because of their high AChE activity, act as a biologic integrator of plasma input function during PET scanning, when regional metabolic rates of [(11)C]MP4A through AChE (k(3); an AChE index) are calculated by using Blomqvist's linear least squares analysis. Computer simulation studies showed that RLS analysis yielded k(3) with almost the same accuracy as the standard nonlinear least squares (NLS) analysis in brain regions with low (such as neocortex and hippocampus) and moderately high (thalamus) k(3) values. The authors then applied these methods to [(11) C]MP4A PET data in 12 healthy subjects and 26 patients with Alzheimer disease (AD) using the cerebellum as the reference region. There was a highly significant linear correlation in regional k(3) estimates between RLS and NLS analyses (456 cerebral regions, [RLS k(3) ] = 0.98 x [NLS k(3) ], r = 0.92, P < 0.001). Significant reductions were observed in k(3) estimates of frontal, temporal, parietal, occipital, and sensorimotor cerebral neocortices (P < 0.001, single-tailed t-test), and hippocampus (P = 0.012) in patients with AD as compared with controls when using RLS analysis. Mean reductions (19.6%) in these 6 regions by RLS were almost the same as those by NLS analysis (20.5%). The sensitivity of RLS analysis for detecting cortical regions with abnormally low k 3 in the 26 patients with AD (138 of 312 regions, 44%) was somewhat less than NLS analysis (52%), but was greater than shape analysis (33%), another method of [(11)C]MP4A kinetic analysis without blood sampling. The authors conclude that RLS analysis is practical and useful for routine analysis of clinical [(11)C]MP4A studies.
ESTHER : Nagatsuka_2001_J.Cereb.Blood.Flow.Metab_21_1354
PubMedSearch : Nagatsuka_2001_J.Cereb.Blood.Flow.Metab_21_1354
PubMedID: 11702050

Title : Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer's disease: a positron emission tomography study - Shinotoh_2000_Ann.Neurol_48_194
Author(s) : Shinotoh H , Namba H , Fukushi K , Nagatsuka S , Tanaka N , Aotsuka A , Ota T , Tanada S , Irie T
Ref : Annals of Neurology , 48 :194 , 2000
Abstract : We measured brain acetylcholinesterase activity in 30 patients with Alzheimer's disease (AD) and 14 age-matched controls by positron emission tomography (PET) and using a carbon 11-labeled acetylcholine analogue. Seven AD patients had repeat PET scans. The k3 values were calculated as an index of acetylcholinesterase activity in a three-compartment analysis using the metabolite corrected arterial input function. Twenty-eight of the 30 AD patients (14 each in the early and late onset subgroups) were retained in the study so as to equalize the range and average severity of cognitive impairment within the early and late onset subgroups. The k3 values were significantly reduced in the neocortex, hippocampus, and amygdala in the early onset AD patients, although the k3 values were significantly reduced only in the temporoparietal cortex and amygdala in the late onset AD patients. In the longitudinal study, all 7 repeat AD patients showed further reduction of cortical k3 values in the second PET scans, with a mean interval of 2 years, suggesting a progressive loss of the ascending cholinergic system from the nucleus basalis of Meynert in AD. In 37 AD patients, there was a highly significant correlation between the cortical k3 values and Mini-Mental State Examination scores, supporting the cholinergic hypothesis in AD.
ESTHER : Shinotoh_2000_Ann.Neurol_48_194
PubMedSearch : Shinotoh_2000_Ann.Neurol_48_194
PubMedID: 10939570

Title : Brain acetylcholinesterase activity in Alzheimer disease measured by positron emission tomography - Shinotoh_2000_Alzheimer.Dis.Assoc.Disord_14 Suppl 1_S114
Author(s) : Shinotoh H , Namba H , Fukushi K , Nagatsuka S , Tanaka N , Aotsuka A , Tanada S , Irie T
Ref : Alzheimer Disease & Associated Disorders , 14 Suppl 1 :S114 , 2000
Abstract : Brain acetylcholinesterase activity was measured in 14 patients with Alzheimer disease and 14 age-matched control subjects by positron emission tomography with a radioactive acetylcholine analogue. Kinetic analysis was performed to calculate k3, an index of acetylcholinesterase activity. The k3 values were significantly reduced in the neocortex, hippocampus, and amygdala of all patients with Alzheimer disease, suggesting a loss of cholinergic innervation from the basal forebrain. Most profound reductions of k3 values were observed in the temporal (-30%) and parietal cortices (-31%), although reductions of k3 values were relatively uniform in the cerebral neocortex. This technique may be a powerful tool for early diagnosis of Alzheimer disease and also for therapeutic monitoring of acetylcholinesterase inhibitors in Alzheimer disease.
ESTHER : Shinotoh_2000_Alzheimer.Dis.Assoc.Disord_14 Suppl 1_S114
PubMedSearch : Shinotoh_2000_Alzheimer.Dis.Assoc.Disord_14 Suppl 1_S114
PubMedID: 10850739

Title : Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age - Namba_1999_Eur.J.Nucl.Med_26_135
Author(s) : Namba H , Iyo M , Fukushi K , Shinotoh H , Nagatsuka S , Suhara T , Sudo Y , Suzuki K , Irie T
Ref : Eur J Nucl Med , 26 :135 , 1999
Abstract : The regional cerebral metabolic rate of [11C]N-methyl-4-piperidyl acetate, which is nearly proportional to regional cerebral acetylcholinesterase (AChE) activity, was measured by dynamic positron emission tomography in 20 healthy subjects with a wide age range (24-89 years). Quantitative measurement was achieved using a kinetic model which consisted of arterial plasma and cerebral tissue compartments. The plasma input function was obtained using thin-layer chromatography and an imaging phosphor plate system at frequent sampling intervals to catch the rapid metabolism of the tracer in the blood. The distribution of the rate constant k3, an index of AChE activity, agreed well with reported post-mortem AChE distribution in the cerebral cortex (0.067-0.097 min-1) and thalamus (0.268 min-1), where AChE activity was low to moderate. The k3 values in the striatum and cerebellum, where AChE activity was very high, did not respond linearly to AChE activity because of increased flow dependency. No significant effect of age was found on AChE activity of the cerebral cortex, suggesting that the ascending central cholinergic system is preserved in normal aging. This study has shown that quantitative measurement of enzyme activity in the living brain is possible through appropriate modelling of tracer kinetics and accurate measurement of the input function. The method should be applicable to patients with Alzheimer's disease and those with other kinds of dementia whose central cholinergic system has been reported to be disturbed.
ESTHER : Namba_1999_Eur.J.Nucl.Med_26_135
PubMedSearch : Namba_1999_Eur.J.Nucl.Med_26_135
PubMedID: 9933347

Title : Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson's disease and progressive supranuclear palsy - Shinotoh_1999_Ann.Neurol_46_62
Author(s) : Shinotoh H , Namba H , Yamaguchi M , Fukushi K , Nagatsuka S , Iyo M , Asahina M , Hattori T , Tanada S , Irie T
Ref : Annals of Neurology , 46 :62 , 1999
Abstract : We measured brain acetylcholinesterase activity in 16 patients with Parkinson's disease (PD), 12 patients with progressive supranuclear palsy (PSP), and 13 age-matched controls, using N-methyl-4-[11C]piperidyl acetate and positron emission tomography. Kinetic analysis was performed to calculate k3, an index of acetylcholinesterase activity. In PD patients, there was a significant reduction (-17%) of cerebral cortical k3 compared with normal controls, whereas there was only a nonsignificant reduction (-10%) of cortical k3 in PSP patients. However, there was a prominent reduction (-38%) of thalamic k3 in PSP patients compared with normal controls, whereas there was only a nonsignificant reduction (-13%) of thalamic k3 in PD patients. The results suggest that there is a loss of cholinergic innervation to the cerebral cortex in association with cholinergic innervation to the thalamus in PD, whereas there is a preferential loss of cholinergic innervation to the thalamus in PSP. When the thalamic to cerebral cortical k3 ratio was taken for each subject, PD and PSP were separated, suggesting that positron emission tomography measurement of acetylcholinesterase activity may be useful for differentiating the two similar disorders.
ESTHER : Shinotoh_1999_Ann.Neurol_46_62
PubMedSearch : Shinotoh_1999_Ann.Neurol_46_62
PubMedID: 10401781

Title : Preserved acetylcholinesterase activity in aged cerebral cortex [letter] -
Author(s) : Namba H , Iyo M , Shinotoh H , Nagatsuka S , Fukushi K , Irie T
Ref : Lancet , 351 :881 , 1998
PubMedID: 9525373

Title : Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer's disease - Iyo_1997_Lancet_349_1805
Author(s) : Iyo M , Namba H , Fukushi K , Shinotoh H , Nagatsuka S , Suhara T , Sudo Y , Suzuki K , Irie T
Ref : Lancet , 349 :1805 , 1997
Abstract : BACKGROUND: Acetylcholinesterase activity, a marker for degeneration of the central cholinergic system, has consistently been reported, in necropsy brain studies, to be reduced in the cerebral cortex of patients with Alzheimer's disease. We have shown regional acetylcholinesterase activity in vivo in rodent and primate brains with radioactive acetylcholine analogues. In the present study, we used one of the analogues to map acetylcholinesterase activity in the brains of living people. METHODS: Positron emission tomography (PET) and a radiolabelled acetylcholine analogue with high hydrolytic specificity to acetylcholinesterase [11C]N-methyl-4-piperidyl acetate (MP4A), was used in eight elderly healthy controls and five patients with Alzheimer's disease who had mild dementia. All participants were given an intravenous injection of [11C]MP4A and then sequential patterns of radioactivity in various brain regions were obtained by PET. Time courses of [11C]MP4A concentration in arterial blood were also measured to obtain an input function. A three-compartment model was used to estimate regional acetylcholinesterase activity in the brain. FINDINGS: The estimated acetylcholinesterase distribution in the brain of the control participants agreed with the acetylcholinesterase distribution at necropsy. All patients with Alzheimer's disease had multiple cortical regions with a reduced estimated acetylcholinesterase activity in comparison with control participants. The reduction was more pronounced in the parietotemporal cortex, with an average reduction rate of 31% in temporal and 38% in parietal cortex, and less pronounced in other cortical lesions (19% in frontal, 24% in occipital, and 20% in sensorimotor cortex). Each patient was found to have at least two cortical regions with significantly reduced acetylcholinesterase activity. INTERPRETATION: The method we describe for non-invasive in-vivo detection of regional acetylcholinesterase changes in the living human brain that is feasible for biochemical assessment of Alzheimer's disease.
ESTHER : Iyo_1997_Lancet_349_1805
PubMedSearch : Iyo_1997_Lancet_349_1805
PubMedID: 9269216

Title : Brain acetylcholinesterase activity: validation of a PET tracer in a rat model of Alzheimer's disease - Irie_1996_J.Nucl.Med_37_649
Author(s) : Irie T , Fukushi K , Namba H , Iyo M , Tamagami H , Nagatsuka S , Ikota N
Ref : J Nucl Med , 37 :649 , 1996
Abstract : We developed three radioactive acetylcholine analogs--N[14C]methyl-4-piperidyl acetate ([14C]MP4A), propionate ([14C]MP4P) and isobutyrate ([14C]MP4IB)--as radiotracers for measuring brain acetylcholinesterase (AchE) activity in vivo. The principle of our method is that the lipophilic analog diffuses into the brain where it is metabolized by AchE to produce a hydrophilic metabolite, which is trapped at the site of its production. The purpose of this study was to examine whether the tracers would have the sensitivity needed for early diagnosis of Alzheimer' disease using rats with a unilateral lesion in the nucleus basalis magnocellularis (NBM), an animal model of the cholinergic deficit in Alzheimer's disease. METHODS: Rats with a unilateral NBM lesion were prepared, and the N[14C]methyl-4-piperidyl esters and N-Isopropyl-p-[123I]iodoamphetamine([123I]IMP were injected intravenously 30 and 2 min, respectively, before the rats were killed. Uptake of 14C and 123I and AchE activity in the lesioned and unlesioned (control) sides of the cortex were measured simultaneously. RESULTS: The NBM lesion showed reduced cortical AchE activity by 30%-50%, with no side-to-side differences in [123I]MP uptake. Autoradiographic studies showed that uptake of 14C from [14C]MP4A and [14C]MP4P was significantly lower in the lesioned than unlesioned side of the cortex, which agreed well with the AchE histochemical staining patterns. Tissue dissection studies showed different uptake changes for the three compounds when AchE activity in the lesioned side of the cortex was reduced by 50%: 14C uptake from [14C]MP4P, [14C]MP4A and [14C]MP4IB was reduced by 27%, 21% and 7.3%, respectively. Theoretical analysis of the observed sensitivities of the tracers in relation to their in vitro enzymatic properties indicated that tracer sensitivity was highly dependent on the enzymatic hydrolysis rate of the tracer. CONCLUSION: The [14C]MP4A and [14C]MP4P esters had sufficient sensitivity to enable AchE activity changes in the rat cortex of less than 50% to be detected, indicating that the present method is applicable to PET diagnosis of Alzheimer's disease.
ESTHER : Irie_1996_J.Nucl.Med_37_649
PubMedSearch : Irie_1996_J.Nucl.Med_37_649
PubMedID: 8691261

Title : In vivo measurement of acetylcholinesterase activity in the brain with a radioactive acetylcholine analog - Namba_1994_Brain.Res_667_278
Author(s) : Namba H , Irie T , Fukushi K , Iyo M
Ref : Brain Research , 667 :278 , 1994
Abstract : A novel method for visualization of brain acetylcholinesterase (AChE) in vivo has been developed. Following intravenous administration of a radiolabelled acetylcholine analog, N-methyl-3-piperidyl acetate, there was very good agreement between the distribution of radioactivity and AChE activity in the brain of rat and monkey. The method would be applicable for in vivo studies of human brain AChE activity in disorders of central cholinergic systems such as Alzheimer's disease
ESTHER : Namba_1994_Brain.Res_667_278
PubMedSearch : Namba_1994_Brain.Res_667_278
PubMedID: 7697367