Baker_2010_Proc.Natl.Acad.Sci.U.S.A_107_8806

Reference

Title : Enigmatic, ultrasmall, uncultivated Archaea - Baker_2010_Proc.Natl.Acad.Sci.U.S.A_107_8806
Author(s) : Baker BJ , Comolli LR , Dick GJ , Hauser LJ , Hyatt D , Dill BD , Land ML , VerBerkmoes NC , Hettich RL , Banfield JF
Ref : Proc Natl Acad Sci U S A , 107 :8806 , 2010
Abstract :

Metagenomics has provided access to genomes of as yet uncultivated microorganisms in natural environments, yet there are gaps in our knowledge-particularly for Archaea-that occur at relatively low abundance and in extreme environments. Ultrasmall cells (<500 nm in diameter) from lineages without cultivated representatives that branch near the crenarchaeal/euryarchaeal divide have been detected in a variety of acidic ecosystems. We reconstructed composite, near-complete approximately 1-Mb genomes for three lineages, referred to as ARMAN (archaeal Richmond Mine acidophilic nanoorganisms), from environmental samples and a biofilm filtrate. Genes of two lineages are among the smallest yet described, enabling a 10% higher coding density than found genomes of the same size, and there are noncontiguous genes. No biological function could be inferred for up to 45% of genes and no more than 63% of the predicted proteins could be assigned to a revised set of archaeal clusters of orthologous groups. Some core metabolic genes are more common in Crenarchaeota than Euryarchaeota, up to 21% of genes have the highest sequence identity to bacterial genes, and 12 belong to clusters of orthologous groups that were previously exclusive to bacteria. A small subset of 3D cryo-electron tomographic reconstructions clearly show penetration of the ARMAN cell wall and cytoplasmic membranes by protuberances extended from cells of the archaeal order Thermoplasmatales. Interspecies interactions, the presence of a unique internal tubular organelle [Comolli, et al. (2009) ISME J 3:159-167], and many genes previously only affiliated with Crenarchaea or Bacteria indicate extensive unique physiology in organisms that branched close to the time that Cren- and Euryarchaeotal lineages diverged.

PubMedSearch : Baker_2010_Proc.Natl.Acad.Sci.U.S.A_107_8806
PubMedID: 20421484
Gene_locus related to this paper: 9eury-c7dfz3 , 9eury-c7dg61 , 9eury-c7dge3 , 9eury-c7dhl2 , 9eury-c7dhn0 , 9eury-d6gve8 , 9eury-d6gvf6

Related information

Gene_locus 9eury-c7dfz3    9eury-c7dg61    9eury-c7dge3    9eury-c7dhl2    9eury-c7dhn0    9eury-d6gve8    9eury-d6gvf6

Citations formats

Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, VerBerkmoes NC, Hettich RL, Banfield JF (2010)
Enigmatic, ultrasmall, uncultivated Archaea
Proc Natl Acad Sci U S A 107 :8806

Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, VerBerkmoes NC, Hettich RL, Banfield JF (2010)
Proc Natl Acad Sci U S A 107 :8806