Barak_2002_Biochemistry_41_8245

Reference

Title : The aromatic trapping of the catalytic histidine is essential for efficient catalysis in acetylcholinesterase - Barak_2002_Biochemistry_41_8245
Author(s) : Barak D , Kaplan D , Ordentlich A , Ariel N , Velan B , Shafferman A
Ref : Biochemistry , 41 :8245 , 2002
Abstract : While substitution of the aromatic residues (Phe295, Phe338), located in the vicinity of the catalytic His447 in human acetylcholinesterase (HuAChE) had little effect on catalytic activity, simultaneous replacement of both residues by aliphatic amino acids resulted in a 680-fold decrease in catalytic activity. Molecular simulations suggested that the activity decline is related to conformational destabilization of His447, similar to that observed for the hexamutant HuAChE which mimics the active center of butyrylcholinesterase. On the basis of model structures of other cholinesterases (ChEs), we predicted that catalytically nonproductive mobility of His447 could be restricted by introduction of aromatic residue in a different location adjacent to this histidine (Val407). Indeed, the F295A/F338A/V407F enzyme is 170-fold more reactive than the corresponding double mutant and only 3-fold less reactive than the wild-type HuAChE. However, analogous substitution of Val407 in the hexamutant HuAChE (generating the heptamutant Y72N/Y124Q/W286A/F295L/F297V/Y337A/V407F) did not enhance catalytic activity. Reactivity of these double, triple, hexa, and hepta mutant HuAChEs was monitored toward covalent ligands such as organophosphates and the transition state analogue TMFTA, which probe, respectively, the facility of the enzymes to accommodate Michaelis complexes and to undergo the acylation process. The findings suggest that in the F295A/F338A mutant the two His447 conformational states, which are essential for the different stages of the catalytic process, seem to be destabilized. On the other hand, in the F295A/F338A/V407F mutant only the state involved in acylation is impaired. Such differential effects on the His447 conformational properties demonstrate the general role of aromatic residues in cholinesterases, and probably in other serine hydrolases, in "trapping" of the catalytic histidine and thereby in optimization of catalytic activity.
ESTHER : Barak_2002_Biochemistry_41_8245
PubMedSearch : Barak_2002_Biochemistry_41_8245
PubMedID: 12081473

Citations formats

Barak D, Kaplan D, Ordentlich A, Ariel N, Velan B, Shafferman A (2002)
The aromatic trapping of the catalytic histidine is essential for efficient catalysis in acetylcholinesterase
Biochemistry 41 :8245

Barak D, Kaplan D, Ordentlich A, Ariel N, Velan B, Shafferman A (2002)
Biochemistry 41 :8245

Array
(
    [id] => 35662
    [paper] => Barak_2002_Biochemistry_41_8245
    [author] => Barak D || Kaplan D || Ordentlich A || Ariel N || Velan B || Shafferman A
    [year] => 2002
    [title] => The aromatic trapping of the catalytic histidine is essential for efficient catalysis in acetylcholinesterase
    [journal] => Biochemistry
    [volume] => 41
    [page] => 8245
    [medline] => 12081473
    [abstract] => Barak_2002_Biochemistry_41_8245
    [kin_reference] => 
    [mutation] => F295A\/F338A_human-ACHE || F295A\/F338A\/V407F_human-ACHE || Y72N\/Y124Q\/W286A\/F295L\/F297V\/Y337A\/V407F_human-ACHE || F295A_human-ACHE || F338A_human-ACHE
    [kinetic_parameter] => 
    [inhibitor] => 
    [kin_value] => 
    [substrate] => 
    [gene_locus] => Array
        (
        )

    [family] => 
    [interact_gene_locus] => 
    [xenobiotic_sensitivity] => 
    [news] => 
    [likid_reference] => 
    [lip_reference] => 
    [gene_locus_frgt] => 
    [structure] => 
    [comment] => 
    [chemical] => 
    [arpigny_jaeger] => 
    [reactivator] => 
    [disease] => 
    [enzyme] => 
    [risk_factor] => 
    [tissue] => 
    [sub_tissue] => 
    [activity] => 
    [specific_activity] => 
    [disease_by_interaction] => 
    [abstract_text] => Array
        (
            [id] => 13792
            [longtext] => Barak_2002_Biochemistry_41_8245
            [content] => While substitution of the aromatic residues (Phe295, Phe338), located in the vicinity of the catalytic His447 in human acetylcholinesterase (HuAChE) had little effect on catalytic activity, simultaneous replacement of both residues by aliphatic amino acids resulted in a 680-fold decrease in catalytic activity. Molecular simulations suggested that the activity decline is related to conformational destabilization of His447, similar to that observed for the hexamutant HuAChE which mimics the active center of butyrylcholinesterase. On the basis of model structures of other cholinesterases (ChEs), we predicted that catalytically nonproductive mobility of His447 could be restricted by introduction of aromatic residue in a different location adjacent to this histidine (Val407). Indeed, the F295A/F338A/V407F enzyme is 170-fold more reactive than the corresponding double mutant and only 3-fold less reactive than the wild-type HuAChE. However, analogous substitution of Val407 in the hexamutant HuAChE (generating the heptamutant Y72N/Y124Q/W286A/F295L/F297V/Y337A/V407F) did not enhance catalytic activity. Reactivity of these double, triple, hexa, and hepta mutant HuAChEs was monitored toward covalent ligands such as organophosphates and the transition state analogue TMFTA, which probe, respectively, the facility of the enzymes to accommodate Michaelis complexes and to undergo the acylation process. The findings suggest that in the F295A/F338A mutant the two His447 conformational states, which are essential for the different stages of the catalytic process, seem to be destabilized. On the other hand, in the F295A/F338A/V407F mutant only the state involved in acylation is impaired. Such differential effects on the His447 conformational properties demonstrate the general role of aromatic residues in cholinesterases, and probably in other serine hydrolases, in "trapping" of the catalytic histidine and thereby in optimization of catalytic activity.
        )

)