Barak_2005_Chem.Biol.Interact_157-158_219

Reference

Title : Lessons from functional analysis of AChE covalent and noncovalent inhibitors for design of AD therapeutic agents - Barak_2005_Chem.Biol.Interact_157-158_219
Author(s) : Barak D , Ordentlich A , Kaplan D , Kronman C , Velan B , Shafferman A
Ref : Chemico-Biological Interactions , 157-158 :219 , 2005
Abstract : Determination of the 3D-structure of acetylcholinesterase (AChE) of Torpedo californica over a decade ago, and more recently that of human enzyme together with extensive targeted mutagenesis of the mammalian AChEs led to a fine mapping of the multiple functional domains within the active center of the enzyme. Many of the contributions of this active center architecture to accommodation of noncovalent ligands could be deduced from the X-ray structures of the corresponding HuAChE complexes. Yet, Michaelis complexes leading to transient covalent adducts are not amenable to structural analysis. Since the rates of formation of the covalent adducts depend predominantly on the stabilities of the corresponding Michaelis complexes, it is essential to characterize the specific interactions contributing to stabilization of these complexes. Functional analysis of interactions with HuAChE enzymes allows for such characterization for carbamates, like pyridostigmine or rivastigmine, much in the same way as that for the noncovalent therapeutic ligands nivalin or aricept. In fact, the observed differences between the affinities toward carbamates and the noncovalent ligands seem to result from specific structural characteristics of the inhibitors rather than from the decomposition path of the particular complex. Replacements at the cation binding site (Trp86), hydrogen bond network (Glu202, Tyr133, Glu450), and hydrophobic pocket result in similar effects for the covalent as well as for the noncovalent inhibitors. Also, while the effects of perturbing the aromatic trapping of the catalytic His447 for pyridostigmine and nivalin were analogous to those for the substrate, the corresponding effects for rivastigmine and aricept were quite different. Thus, elucidation of the functional architecture of the HuAChE active center is bound to be of considerable utility in the current effort to design novel covalent AChE inhibitors as therapeutics for Alzheimer's disease (AD).
ESTHER : Barak_2005_Chem.Biol.Interact_157-158_219
PubMedSearch : Barak_2005_Chem.Biol.Interact_157-158_219
PubMedID: 16289124

Related information

Citations formats

Barak D, Ordentlich A, Kaplan D, Kronman C, Velan B, Shafferman A (2005)
Lessons from functional analysis of AChE covalent and noncovalent inhibitors for design of AD therapeutic agents
Chemico-Biological Interactions 157-158 :219

Barak D, Ordentlich A, Kaplan D, Kronman C, Velan B, Shafferman A (2005)
Chemico-Biological Interactions 157-158 :219