Bell_2022_Nat.Catal_5_673

Reference

Title : Directed evolution of an efficient and thermostable PET depolymerase - Bell_2022_Nat.Catal_5_673
Author(s) : Bell EL , Smithson R , Kilbride S , Foster J , Hardy FJ , Ramachandran S , Tedstone AA , Haigh SJ , Garforth AA , Day PJR , Levy C , Shaver MP , Green AP
Ref : Nature Catalysis , 5 :673 , 2022
Abstract :

The recent discovery of IsPETase, a hydrolytic enzyme that can deconstruct poly(ethylene terephthalate) (PET), has sparked great interest in biocatalytic approaches to recycle plastics. Realization of commercial use will require the development of robust engineered enzymes that meet the demands of industrial processes. Although rationally engineered PETases have been described, enzymes that have been experimentally optimized via directed evolution have not previously been reported. Here, we describe an automated, high-throughput directed evolution platform for engineering polymer degrading enzymes. Applying catalytic activity at elevated temperatures as a primary selection pressure, a thermostable IsPETase variant (HotPETase, Tm= 82.5 C) was engineered that can operate at the glass transition temperature of PET. HotPETase can depolymerize semicrystalline PET more rapidly than previously reported PETases and can selectively deconstruct the PET component of a laminated multimaterial. Structural analysis of HotPETase reveals interesting features that have emerged to improve thermotolerance and catalytic performance. Our study establishes laboratory evolution as a platform for engineering useful plastic degrading enzymes.

PubMedSearch : Bell_2022_Nat.Catal_5_673
PubMedID:
Gene_locus related to this paper: idesa-peth

Related information

Gene_locus idesa-peth
Structure 7QVH

Citations formats

Bell EL, Smithson R, Kilbride S, Foster J, Hardy FJ, Ramachandran S, Tedstone AA, Haigh SJ, Garforth AA, Day PJR, Levy C, Shaver MP, Green AP (2022)
Directed evolution of an efficient and thermostable PET depolymerase
Nature Catalysis 5 :673

Bell EL, Smithson R, Kilbride S, Foster J, Hardy FJ, Ramachandran S, Tedstone AA, Haigh SJ, Garforth AA, Day PJR, Levy C, Shaver MP, Green AP (2022)
Nature Catalysis 5 :673