Ben Ali_2012_Biochimie_94_137

Reference

Title : The molecular mechanism of human hormone-sensitive lipase inhibition by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones - Ben Ali_2012_Biochimie_94_137
Author(s) : Ben Ali Y , Verger R , Carriere F , Petry S , Muller G , Abousalham A
Ref : Biochimie , 94 :137 , 2012
Abstract :

Hormone-sensitive lipase (HSL) plays an important role in the mobilization of free fatty acids (FFA) from adipocytes. The inhibition of HSL may offer a pharmacological approach to reduce FFA levels in plasma and diminish peripheral insulin resistance in type 2 diabetes. In this work, the inhibition of HSL by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones has been studied in vitro. 5-methoxy-3-(3-phenoxyphenyl)-1,3,4-oxadiazol-2(3H)-one (compound 7600) and 5-methoxy-3-(3-methyl-4-phenylacetamidophenyl)-1,3,4-oxadiazol-2(3H)-one (compound 9368) were selected as the most potent HSL inhibitors. HSL is inhibited after few minutes of incubation with compound 7600, at a molar excess of 20. This inhibition is reversed in the presence of an emulsion of lipid substrate. The reactivation phenomenon is hardly observed when incubating HSL with compound 9368. The molecular mechanism underlying the reversible inhibition of HSL by compound 7600 was investigated using high performance liquid chromatography and tandem mass spectrometry. The stoichiometry of the inhibition reaction revealed that specifically one molecule of inhibitor was bound per enzyme molecule. The inhibition by compound 7600 involves a nucleophilic attack by the hydroxy group of the catalytic Ser of the enzyme on the carbon atom of the carbonyl moiety of the oxadiazolone ring of the inhibitor, leading to the formation of covalent enzyme-inhibitor intermediate. This covalent intermediate is subsequently hydrolyzed, releasing an oxadiazolone decomposition product, carbon dioxide and the active HSL form. On the basis of this study, a kinetic model is proposed to describe the inhibition of HSL by compound 7600 in the aqueous phase as well as its partial reactivation at the lipid-water interface.

PubMedSearch : Ben Ali_2012_Biochimie_94_137
PubMedID: 22008857
Gene_locus related to this paper: human-LIPE

Related information

Inhibitor Compound-9368    MmPPOX
Gene_locus Compound-9368    MmPPOX    human-LIPE

Citations formats

Ben Ali Y, Verger R, Carriere F, Petry S, Muller G, Abousalham A (2012)
The molecular mechanism of human hormone-sensitive lipase inhibition by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones
Biochimie 94 :137

Ben Ali Y, Verger R, Carriere F, Petry S, Muller G, Abousalham A (2012)
Biochimie 94 :137