Fritsch_2019_Antioxid.Redox.Signal_31_1235

Reference

Title : The MarR-Type Repressor MhqR Confers Quinone and Antimicrobial Resistance in Staphylococcus aureus - Fritsch_2019_Antioxid.Redox.Signal_31_1235
Author(s) : Fritsch VN , Loi VV , Busche T , Sommer A , Tedin K , Nurnberg DJ , Kalinowski J , Bernhardt J , Fulde M , Antelmann H
Ref : Antioxid Redox Signal , 31 :1235 , 2019
Abstract :

Aims: Quinone compounds are electron carriers and have antimicrobial and toxic properties due to their mode of actions as electrophiles and oxidants. However, the regulatory mechanism of quinone resistance is less well understood in the pathogen Staphylococcus aureus. Results: Methylhydroquinone (MHQ) caused a thiol-specific oxidative and electrophile stress response in the S. aureus transcriptome as revealed by the induction of the PerR, QsrR, CstR, CtsR, and HrcA regulons. The SACOL2531-29 operon was most strongly upregulated by MHQ and was renamed as mhqRED operon based on its homology to the Bacillus subtilis locus. Here, we characterized the MarR-type regulator MhqR (SACOL2531) as quinone-sensing repressor of the mhqRED operon, which confers quinone and antimicrobial resistance in S. aureus. The mhqRED operon responds specifically to MHQ and less pronounced to pyocyanin and ciprofloxacin, but not to reactive oxygen species (ROS), hypochlorous acid, or aldehydes. The MhqR repressor binds specifically to a 9-9 bp inverted repeat (MhqR operator) upstream of the mhqRED operon and is inactivated by MHQ in vitro, which does not involve a thiol-based mechanism. In phenotypic assays, the mhqR deletion mutant was resistant to MHQ and quinone-like antimicrobial compounds, including pyocyanin, ciprofloxacin, norfloxacin, and rifampicin. In addition, the mhqR mutant was sensitive to sublethal ROS and 24 h post-macrophage infections but acquired an improved survival under lethal ROS stress and after long-term infections. Innovation: Our results provide a link between quinone and antimicrobial resistance via the MhqR regulon of S. aureus. Conclusion: The MhqR regulon was identified as a novel resistance mechanism towards quinone-like antimicrobials and contributes to virulence of S. aureus under long-term infections.

PubMedSearch : Fritsch_2019_Antioxid.Redox.Signal_31_1235
PubMedID: 31310152

Related information

Citations formats

Fritsch VN, Loi VV, Busche T, Sommer A, Tedin K, Nurnberg DJ, Kalinowski J, Bernhardt J, Fulde M, Antelmann H (2019)
The MarR-Type Repressor MhqR Confers Quinone and Antimicrobial Resistance in Staphylococcus aureus
Antioxid Redox Signal 31 :1235

Fritsch VN, Loi VV, Busche T, Sommer A, Tedin K, Nurnberg DJ, Kalinowski J, Bernhardt J, Fulde M, Antelmann H (2019)
Antioxid Redox Signal 31 :1235