Fronza_2021_Brain.Behav.Immun__

Reference

Title : Beneficial effects of QTC-4-MeOBnE in an LPS-induced mouse model of depression and cognitive impairments: the role of blood-brain barrier permeability, NF-kB signaling, and microglial activation - Fronza_2021_Brain.Behav.Immun__
Author(s) : Fronza MG , Baldinotti R , Fetter J , Goncalves Rosa S , Sacramento M , Wayne Nogueira C , Alves D , Pratic D , Savegnago L
Ref : Brain Behavior & Immunity , : , 2021
Abstract :

Clinical and preclinical investigations have suggested a possible biological link betweenmajor depressive disorder (MDD) and Alzheimer's disease (AD). Therefore, a pharmacologic approach to treating MDD could be envisioned as a preventative therapy for some AD cases. In line with this, 1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4 carboxamide (QTC-4-MeOBnE) is characterized as an inhibitor of beta-secretase, glycogen synthase kinase 3beta, and acetylcholinesterase and has also shown secondary effects underlying the modulation of neurogenesis and synaptic plasticity pathways. Therefore, we investigated the effects of QTC-4-MeOBnE treatment (0.1 or 1 mg/kg) on depressive-like behavior and cognitive impairments elicited by repeated injections of lipopolysaccharide (LPS; 250 microg/kg) in mice. Injections of LPS for seven days led to memory impairments and depressive-like behavior, as evidenced in the Y-maze/object recognition test and forced swimming/splash tests, respectively. However, these impairments were prevented in mice that, after the last LPS injection, were also treated with QTC-4-MeOBnE (1 mg/kg). This effect was associated with restoring blood-brain barrier permeability, reducing oxidative/nitrosative biomarkers, and decreasing neuroinflammation mediated NF-kappaB signaling in the hippocampus and cortex of the mice. To further investigate the involvement with NF-kappaB signaling, we evaluated the effects of QTC-4-MeOBnE on microglial cell activation through canonical and non-canonical pathways and the modulation of the involved components. Together, our findings highlight the pharmacological benefits of QTC-4-MeOBnE in a mouse model of sickness behavior and memory impairments, supporting the novel concept that since this molecule produces anti-depressant activity, it could also be beneficial for preventing AD onset and related dementias in subjects suffering from MDD through inflammatory pathway modulation.

PubMedSearch : Fronza_2021_Brain.Behav.Immun__
PubMedID: 34624485

Related information

Citations formats

Fronza MG, Baldinotti R, Fetter J, Goncalves Rosa S, Sacramento M, Wayne Nogueira C, Alves D, Pratic D, Savegnago L (2021)
Beneficial effects of QTC-4-MeOBnE in an LPS-induced mouse model of depression and cognitive impairments: the role of blood-brain barrier permeability, NF-kB signaling, and microglial activation
Brain Behavior & Immunity :

Fronza MG, Baldinotti R, Fetter J, Goncalves Rosa S, Sacramento M, Wayne Nogueira C, Alves D, Pratic D, Savegnago L (2021)
Brain Behavior & Immunity :