Gallagher_2016_Fluids.Barriers.CNS_13_10

Reference

Title : In vitro characterization of pralidoxime transport and acetylcholinesterase reactivation across MDCK cells and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs) - Gallagher_2016_Fluids.Barriers.CNS_13_10
Author(s) : Gallagher E , Minn I , Chambers JE , Searson PC
Ref : Fluids Barriers CNS , 13 :10 , 2016
Abstract :

BACKGROUND: Current therapies for organophosphate poisoning involve administration of oximes, such as pralidoxime (2-PAM), that reactivate the enzyme acetylcholinesterase. Studies in animal models have shown a low concentration in the brain following systemic injection.
METHODS: To assess 2-PAM transport, we studied transwell permeability in three Madin-Darby canine kidney (MDCKII) cell lines and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs). To determine whether 2-PAM is a substrate for common brain efflux pumps, experiments were performed in the MDCKII-MDR1 cell line, transfected to overexpress the P-gp efflux pump, and the MDCKII-FLuc-ABCG2 cell line, transfected to overexpress the BCRP efflux pump. To determine how transcellular transport influences enzyme reactivation, we developed a modified transwell assay where the inhibited acetylcholinesterase enzyme, substrate, and reporter are introduced into the basolateral chamber. Enzymatic activity was inhibited using paraoxon and parathion.
RESULTS: The permeability of 2-PAM is about 2 x 10(-6) cm s(-1) in MDCK cells and about 1 x 10(-6) cm s(-1) in BC1-hBMECs. Permeability is not influenced by pre-treatment with atropine. In addition, 2-PAM is not a substrate for the P-gp or BCRP efflux pumps.
CONCLUSIONS: The low permeability explains poor brain penetration of 2-PAM and therefore the slow enzyme reactivation. This elucidates one of the reasons for the necessity of sustained intravascular (IV) infusion in response to organophosphate poisoning.

PubMedSearch : Gallagher_2016_Fluids.Barriers.CNS_13_10
PubMedID: 27396356

Related information

Citations formats

Gallagher E, Minn I, Chambers JE, Searson PC (2016)
In vitro characterization of pralidoxime transport and acetylcholinesterase reactivation across MDCK cells and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs)
Fluids Barriers CNS 13 :10

Gallagher E, Minn I, Chambers JE, Searson PC (2016)
Fluids Barriers CNS 13 :10