Le_2022_Int.J.Biol.Macromol__

Reference

Title : Dual functional roles of a novel bifunctional beta-lactamase\/esterase from Lactococcus garvieae - Le_2022_Int.J.Biol.Macromol__
Author(s) : Le L , Yoo W , Wang Y , Jeon S , Kim KK , Kim HW , Kim TD
Ref : Int J Biol Macromol , : , 2022
Abstract : A novel bifunctional beta-lactamase/esterase (LgLacI), which is capable of hydrolyzing beta-lactam-containing antibiotics including ampicillin, oxacillin, and cefotaxime as well as synthesizing biodiesels, was cloned from Lactococcus garvieae. Unlike most bacterial esterases/lipases that have G-x-S-x-G motif, LgLacI, which contains S-x-x-K catalytic motif, has sequence similarities to bacterial family VIII esterase as well as beta-lactamases. The catalytic properties of LgLacI were explored using a wide range of biochemical methods including spectroscopy, assays, structural modeling, mutagenesis, and chromatography. We confirmed the bifunctional property of LgLacI hydrolyzing both esters and beta-lactam antibiotics. This study provides novel perspectives into a bifunctional enzyme from L. garvieae, which can degrade beta-lactam antibiotics with high esterase activity.
ESTHER : Le_2022_Int.J.Biol.Macromol__
PubMedSearch : Le_2022_Int.J.Biol.Macromol__
PubMedID: 35183603

Related information

Citations formats

Le L, Yoo W, Wang Y, Jeon S, Kim KK, Kim HW, Kim TD (2022)
Dual functional roles of a novel bifunctional beta-lactamase\/esterase from Lactococcus garvieae
Int J Biol Macromol :

Le L, Yoo W, Wang Y, Jeon S, Kim KK, Kim HW, Kim TD (2022)
Int J Biol Macromol :