Lenfant_2014_J.Mol.Neurosci_53_362

Reference

Title : Tracking the origin and divergence of cholinesterases and neuroligins: the evolution of synaptic proteins - Lenfant_2014_J.Mol.Neurosci_53_362
Author(s) : Lenfant N , Hotelier T , Bourne Y , Marchot P , Chatonnet A
Ref : Journal of Molecular Neuroscience , 53 :362 , 2014
Abstract :

A cholinesterase activity can be found in all kingdoms of living organism, yet cholinesterases involved in cholinergic transmission appeared only recently in the animal phylum. Among various proteins homologous to cholinesterases, one finds neuroligins. These proteins, with an altered catalytic triad and no known hydrolytic activity, display well-identified cell adhesion properties. The availability of complete genomes of a few metazoans provides opportunities to evaluate when these two protein families emerged during evolution. In bilaterian animals, acetylcholinesterase co-localizes with proteins of cholinergic synapses while neuroligins co-localize and may interact with proteins of excitatory glutamatergic or inhibitory GABAergic/glycinergic synapses. To compare evolution of the cholinesterases and neuroligins with other proteins involved in the architecture and functioning of synapses, we devised a method to search for orthologs of these partners in genomes of model organisms representing distinct stages of metazoan evolution. Our data point to a progressive recruitment of synaptic components during evolution. This finding may shed light on the common or divergent developmental regulation events involved into the setting and maintenance of the cholinergic versus glutamatergic and GABAergic/glycinergic synapses.

PubMedSearch : Lenfant_2014_J.Mol.Neurosci_53_362
PubMedID: 24390353

Related information

Family Neuroligin

Citations formats

Lenfant N, Hotelier T, Bourne Y, Marchot P, Chatonnet A (2014)
Tracking the origin and divergence of cholinesterases and neuroligins: the evolution of synaptic proteins
Journal of Molecular Neuroscience 53 :362

Lenfant N, Hotelier T, Bourne Y, Marchot P, Chatonnet A (2014)
Journal of Molecular Neuroscience 53 :362