Title : Stoichiometry and pharmacology of two human alpha4beta2 nicotinic receptor types - Moroni_2006_J.Mol.Neurosci_30_95 |
Author(s) : Moroni M , Bermudez I |
Ref : Journal of Molecular Neuroscience , 30 :95 , 2006 |
Abstract :
The alpha4beta2 nicotinic acetylcholine receptor (nAChR) is the most abundant nAChR subtype in the brain, where it forms the high-affinity binding site for nicotine. The alpha4beta2 nAChR belongs to a gene family of ligand-gated ion channels that also includes muscle nAChRs, GABAA receptors, and glycine receptors and that assembles into pentameric structures. alpha4 and beta2 nAChR subunits expressed heterologously in Xenopus laevis oocytes assemble into a mixture of high- and low-affinity functional receptors, giving rise to biphasic ACh concentration-response curves (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001). High- and low-affinity alpha4beta2 nAChRs differ significantly in their functional and pharmacological properties (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003) and result from the assembly of alpha4 and beta2 subunits into two distinct stoichiometric arrangements: (alpha4)2(beta2)3(high-affinity subtype) and (alpha4)3(beta2)2 (low-affinity subtype) (Nelson et al., 2003). In this study we have examined the functional and pharmacological properties of high- and low-affinity alpha4beta2 receptors using two-electrode voltage clamp procedures on Xenopus oocytes transfected with high (1:10) or low (10:1) ratios of alpha4/beta2 cDNAs, which yield high (1:10)- or low (10:1)- affinity receptors with monophasic ACh concentration- response curves. Furthermore, to determine the stoichiometry of high- and low-affinity receptors expressed heterologously by Xenopus oocytes, we have determined the stoichiometry of high- and low-affinity alpha4beta2 receptors by mutating a highly conserved hydrophobic residue in the middle (position 9') of the pore-lining domain, which increases agonist potency in a manner that allows predictions on subunit composition (Cooper et al., 1991; Revah et al., 1991; Labarca et al., 1995; Boorman et al., 2000). |
PubMedSearch : Moroni_2006_J.Mol.Neurosci_30_95 |
PubMedID: 17192644 |
Moroni M, Bermudez I (2006)
Stoichiometry and pharmacology of two human alpha4beta2 nicotinic receptor types
Journal of Molecular Neuroscience
30 :95
Moroni M, Bermudez I (2006)
Journal of Molecular Neuroscience
30 :95