Muirhead_2024_G3.(Bethesda)__

Reference

Title : Neurexin drives C. elegans avoidance behavior independently of its post-synaptic binding partner Neuroligin - Muirhead_2024_G3.(Bethesda)__
Author(s) : Muirhead CS , Reddy KC , Guerra S , Rieger M , Hart MP , Srinivasan J , Chalasani EH, Sr.
Ref : G3 (Bethesda) , : , 2024
Abstract :

Neurexins and their canonical binding partners, neuroligins, are localized to neuronal pre-, and post-synapses, respectively, but less is known about their role in driving behaviors. Here, we use the nematode C. elegans to show that neurexin, but not neuroligin, is required for avoiding specific chemorepellents. We find that adults with knockouts of the entire neurexin locus exhibit a strong avoidance deficit in response to glycerol and a weaker defect in response to copper. Notably, the C. elegans neurexin (nrx-1) locus, like its mammalian homologs, encodes multiple isoforms, alpha and gamma. Using isoform-specific mutations, we find that the gamma isoform is selectively required for glycerol avoidance. Next, we used transgenic rescue experiments to show that this isoform functions at least partially in the nervous system. We also confirm that the transgenes are expressed in the neurons and observe protein accumulation in neurites. Furthermore, we tested whether these mutants affect the behavioral responses of juveniles. We find that juveniles (4th larval stages) of mutants knocking out the entire locus or the alpha-isoforms, but not gamma-isoform, are defective in avoiding glycerol. These results suggest that the different neurexin isoforms affect chemosensory avoidance behavior in juveniles and adults, providing a general principle of how isoforms of this conserved gene affect behavior across species.

PubMedSearch : Muirhead_2024_G3.(Bethesda)__
PubMedID: 38781440
Gene_locus related to this paper: caeel-NLGN1

Related information

Gene_locus caeel-NLGN1
Family caeel-NLGN1    Neuroligin

Citations formats

Muirhead CS, Reddy KC, Guerra S, Rieger M, Hart MP, Srinivasan J, Chalasani EH, Sr. (2024)
Neurexin drives C. elegans avoidance behavior independently of its post-synaptic binding partner Neuroligin
G3 (Bethesda) :

Muirhead CS, Reddy KC, Guerra S, Rieger M, Hart MP, Srinivasan J, Chalasani EH, Sr. (2024)
G3 (Bethesda) :