Pfeifer_2001_J.Biol.Chem_276_38370

Reference

Title : A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine - Pfeifer_2001_J.Biol.Chem_276_38370
Author(s) : Pfeifer V , Nicholson GJ , Ries J , Recktenwald J , Schefer AB , Shawky RM , Schroder J , Wohlleben W , Pelzer S
Ref : Journal of Biological Chemistry , 276 :38370 , 2001
Abstract :

Balhimycin, a vancomycin-type antibiotic from Amycolatopsis mediterranei, contains the unusual amino acid (S)-3,5-dihydroxyphenylglycine (Dpg), with an acetate-derived carbon backbone. After sequence analysis of the biosynthetic gene cluster, one gene, dpgA, for a predicted polyketide synthase (PKS) was identified, sharing 20-30% identity with plant chalcone synthases. Inactivation of dpgA resulted in loss of balhimycin production, and restoration was achieved by supplementation with 3,5-dihydroxyphenylacetic acid, which is both a possible product of a PKS reaction and a likely precursor of Dpg. Enzyme assays with the protein expressed in Streptomyces lividans showed that this PKS uses only malonyl-CoA as substrate to synthesize 3,5-dihydroxyphenylacetic acid. The PKS gene is organized in an operon-like structure with three downstream genes that are similar to enoyl-CoA-hydratase genes and a dehydrogenase gene. The heterologous co-expression of all four genes led to accumulation of 3,5-dihydroxyphenylglyoxylic acid. Therefore, we now propose a reaction sequence. The final step in the pathway to Dpg is a transamination. A predicted transaminase gene was inactivated, resulting in abolished antibiotic production and accumulation of 3,5-dihydroxyphenylglyoxylic acid. Interestingly, restoration was only possible by simultaneous supplementation with (S)-3,5-dihydroxyphenylglycine and (S)-4-hydroxyphenylglycine, indicating that the transaminase is essential for the formation of both amino acids.

PubMedSearch : Pfeifer_2001_J.Biol.Chem_276_38370
PubMedID: 11495926
Gene_locus related to this paper: amyme-BHP , amyme-BPSC

Related information

Gene_locus amyme-BHP    amyme-BPSC

Citations formats

Pfeifer V, Nicholson GJ, Ries J, Recktenwald J, Schefer AB, Shawky RM, Schroder J, Wohlleben W, Pelzer S (2001)
A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine
Journal of Biological Chemistry 276 :38370

Pfeifer V, Nicholson GJ, Ries J, Recktenwald J, Schefer AB, Shawky RM, Schroder J, Wohlleben W, Pelzer S (2001)
Journal of Biological Chemistry 276 :38370